
� �

cs3157 CGI lecture (mon-14-feb-2005)

� today:

– continuing with C

� control flow

� strings

� string library

– CGI

� cgi with C

� cgi with perl

– leftover perl

� more built-in functions

� subroutines

� regular expressions

� pattern matching

cs3157-spring2005-sklar 1� �

� �

C control flow.

� blocks are enclosed in curly brackets

� functions are blocks

� main() is a function

� blocks have two parts:

– variable declaration (“data segment”)

– code segment

� in C, variables have to be declared before they are used

� initializations can occur at the end of the declaration section, but before the code section

cs3157-spring2005-sklar 2� �

� �

strings (1).

� storing multiple characters in a single variable

� data type is still char

� BUT it has a length

� last character the is terminator: ’\0’, aka NULL

� string constants are surrounded by double quotes: "

� example:

char s[6] = "ABCDE";

cs3157-spring2005-sklar 3� �

� �

strings (2).
� example:

char s[6] = "ABCDE";

� storage looks like this: A B C D E

�

0

� so with strings, you really only access the values stored at indeces

�

through

�	
 � � 
�� �

,
since the value stored at

�	
 � � 
�� �

is always

�

0

cs3157-spring2005-sklar 4� �



� �

strings (3).

� printing strings

� format sequence: %s

� example:

#include <stdio.h>
int main() {
char str[6] = "ABCDE";
printf( "str = %s\n", str );

} /* end of main() */

� output:

ABCDE

cs3157-spring2005-sklar 5� �

� �

string library (1).

� to use the string library, include the header in your C source file:

#include <string.h>

� string length function:

int strlen( char *s );

this function returns the number of characters in s; note that this is NOT the same thing
as the number of characters allocated for the string array

� string comparison function:

int strcmp( const char *s1, const char *s2 );

“This function returns an integer greater than, equal to, or less than 0, if the string pointed
to by s1 is greater than, equal to, or less than the string pointed to by s2 respectively. The
sign of a non-zero return value is determined by the sign of the difference between the
values of the first pair of bytes that differ in the strings being compared.”

� for more information and more string functions, do (e.g.):

unix$ man strcmp

cs3157-spring2005-sklar 6� �

� �

string library (2).

� copying functions:

char *strcpy( char *dest, char *source );

– copies characters from source array into dest array up to NULL

char *strncpy( char *dest, char *source, int num );

– copies characters from source array into dest array; stops after num characters (if
no NULL before that); appends NULL

cs3157-spring2005-sklar 7� �

� �

string library (3).
� search functions:

char *strchr( const char *source, const char ch );

– returns pointer to first occurrence of ch in source; NULL if none

char *strstr( const char *source, const char *search );

– return pointer to first occurrence of search in source

cs3157-spring2005-sklar 8� �



� �

string library (4).

� parsing function:

char *strtok( char *s1, const char *s2 );

– breaks string s1 into a series of tokens, delimited by s2

– called the first time with s1 equal to the string you want to break up

– called subsequent times with NULL as the first argument

– each time is called, it returns the next token on the string

– returns null when no more tokens remain

char inputline[1024];
char *name, *rank, *serial_num;
printf( "enter name+rank+serial number: " );
scanf( "%s", inputline );
name = strtok( inputline,"+" );
rank = strtok( null,"+" );
serial_num = strtok( null,"+" );

cs3157-spring2005-sklar 9� �

� �

string library (5).

� formatting functions — using internal buffers:

int sscanf(char *string, char *format, ...)

– parse the contents of string according to format

– placed the parsed items into 3rd, 4th, 5th, ... argument

– return the number of successful conversions

int sprintf(char *buffer, char *format, ...)

– produce a string formatted according to format

– place this string into the buffer

– the 3rd, 4th, 5th, ... arguments are formatted

– return number of successful conversions

� format characters are like printf and scanf (see notes from earlier lectures)

cs3157-spring2005-sklar 10� �

� �

CGI (1).

� CGI = common gateway interface

� standard for invoking external applications from within a browser

� basis for things like PHP

� name the executable SOMETHING.cgi (use the “cgi” extension)

� output — first line MUST be:

– Content-type: text/plain for plain text output

– Content-type: text/html for html output

� input — two ways (via html forms):

– environment (GET)

– stdin (POST)

� with C, compile like this (e.g.):
gcc -o plain_c.cgi plain_c.c

cs3157-spring2005-sklar 11� �

� �

CGI (2).
� examples: http://www1.cs.columbia.edu/˜cs3157/cgi

� plain text output:
plain_c.cgi (from plain_c.c) and
plain_pl.cgi

� html output:
html_c.cgi (from html_c.c) and
html_pl.cgi

� env input:
form_qs_c.html to qs_c.cgi (from qs_c.c) and
form_qs_pl.html to qs_pl.cgi

� stdin input:
form_stdin_c.html to stdin_c.cgi (from stdin_c.c) and
form_stdin_pl.html to stdin_pl.cgi

cs3157-spring2005-sklar 12� �



� �

perl — subroutines.

� syntax for defining:

sub name {block}
sub name (proto) {block}

� where proto is like a prototype, where you put in sample arguments

� syntax for calling:

name(args);
name args;

� any arguments passed to a subroutine come in as the array @_

� you can use the return statement, like in C

cs3157-spring2005-sklar 13� �

� �

perl — built-in functions.

� here are a few:

� chomp $var
chomp @list
removes any line-ending characters

� chop $var
chop @list
removes last character

� chr number
returns the character represented by the ASCII value number

� eof filehandle
returns true if next read on filehandle will return end-of-file

� exists $hash{$key}
returns true if specified hash key exists, even if its value is undefined

� exit
exits the perl process immediately

cs3157-spring2005-sklar 14� �

� �

� getc filehandle
reads next byte from filehandle

� index string, substr [, start]
returns position of first occurrence of substr in string, with optional starting position; also
rindex which is index in reverse

� opendir dirhandle, dirname
opens a directory for processing, kind of like a file; use readdir and closedir to
process

� split /pattern/, string [, limit]
splits string into a list of substrings, by finding delimiters that match pattern;
example: split /([-,])/,"1-10,20"; returns (1, ’-’, 10, ’,’, 20)

� substr string, pos [, n, replacement]
returns substring in string starting with position pos, for n characters

cs3157-spring2005-sklar 15� �

� �

perl — regular expressions.
� simplest regular expression is a literal string

� complex regular expressions use metacharacters to describe various options in building a
pattern... “I never metacharacter I didn’t like”

� metacharacters:
\ escapes the character immediately following it
. matches any single character except newline
ˆ matches at the beginning of a string
$ matches at the end of a string
* matches the preceding element 0 or more times
+ matches the preceding element 1 or more times
? matches the preceding element 0 or 1 times
{ ... } specifies a range of occurrences for the element preceding it
[ ... ] matches any one of the class of characters in the brackets
( ... ) groups expressions
| matches either the expression before or after it

note that there are some exceptions to these rules

cs3157-spring2005-sklar 16� �



� �

perl — pattern matching.

� =˜ binds a scalar to a patterm match, substitution or translation

� !˜ just like above, except that the return value is negated in the logical sense

� operators:

– m/pattern/gimosx : match

� g = match globally (all instances)

� i = do case insensitive matching

� note that first m is optional

– s/pattern/replacement/egimosx : search

� e = evaluate right side as an expression

� g = match globally (all instances)

� i = do case insensitive matching

– y/pattern1/pattern2/cds : translate

� c = complement pattern1

� d = delete found but unreplaced characters

� s = squash duplicate replaced characters

cs3157-spring2005-sklar 17� �

� �

perl — pattern matching, example 1.

� example

#!/usr/bin/perl

$s = "hello world";
print ’$s=[’,$s,"]\n";

if ($s =˜ m/x/) { print "there’s an x in ",$s,"\n" }
else { print "there isn’t\n" }

if ($s =˜ m/L/i) { print "there’s an l in ",$s,"\n" }
else { print "there isn’t\n" }

� output:

$s=[hello world]
there isn’t
there’s an l in hello world

cs3157-spring2005-sklar 18� �

� �

perl — pattern matching, example 2.

� example

#!/usr/bin/perl

$s = "hello world";
print ’$s=[’,$s,"]\n";

$t = ($s =˜ s/l/x/g);
print ’$t=[’,$t,"]\n";
print ’$s=[’,$s,"]\n";

� output:

$s=[hello world]
$t=[3]
$s=[hexxo worxd]

cs3157-spring2005-sklar 19� �

� �

perl — pattern matching, example 3.
� example

#!/usr/bin/perl

$s = "hello world";
print ’$s=[’,$s,"]\n";

$u = ($s =˜ y/l/o/c);
print ’$u=[’,$u,"]\n";
print ’$s=[’,$s,"]\n";

� output:

$s=[hello world]
$u=[8]
$s=[oollooooolo]

cs3157-spring2005-sklar 20� �


