
� �

cs3157: and another C lecture (mon-28-feb-2005)

� today:

– arrays

– pointers

– dynamic memory allocation

– functions

– function arguments

– arrays and pointers as function arguments

cs3157-spring2005-sklar-perl 1� �
� �

arrays overview.

� arrays and pointers are strongly related in C

int a[10]; // declare an array of size 10 ints (consecutive in memory)
int *pa; // declare a pointer to an int
pa = &a[0]; // pa points to the 0th element of a i.e., the address of a[0]
pa = a; // this has the same effect

� pointer arithmetic is meaningful with arrays:
if we do ��� � � 	
 �� then � � �� � � �

points to � 	 � �

� remember difference between

� � �� � � �

and � � �� � � �

(which == � �� � �

)

� note that an array name is a pointer, so we can also do � � � � � �

and in general:� � � � � �� � � 	 � �

and so are � � �� � � � 	 � �

� the difference:
an array name is a constant, and a pointer is not
so we can do: ��� � and � � � �

but we can NOT do: � � �� or � � �

or �� � �

� when an array name is passed to a function, what is passed is the beginning of the array

cs3157-spring2005-sklar-perl 2� �

� �

arrays (1).

� a string is an array of characters

� an array is a “regular grouping or ordering”

� a data structure consisting of related elements of the same data type

� in C, an array has a length associated with it

� arrays need:

– data type

– name

– length

� length can be determined:

– statically — at compile time
e.g., char str1[10];

– dynamically — at run time
e.g., char *str2;

cs3157-spring2005-sklar-perl 3� �
� �

arrays (2).
� defining a variable is called “allocating memory” to store that variable

� defining an array means allocating memory for a group of bytes, i.e., assigning a label to
the first byte in the group

� individual array elements are indexed

– starting with

– ending with

��� � � ��� �

� indeces follow array name, enclosed in square brackets ([])
e.g., arr[25]

cs3157-spring2005-sklar-perl 4� �

� �

array (3).

character array example

#include <stdio.h>
#define MAX 6
int main(void) {
char str[MAX] = "ABCDE";
int i;
for (i=0; i<MAX-1; i++) {
printf("%c", str[i]);

}
printf("\n");

} /* end of main() */

cs3157-spring2005-sklar-perl 5� �
� �

arrays (4).

integer array example

#include <stdio.h>
#define MAX 6
int main(void) {
int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };
int i;
for (i=0; i<MAX; i++) {
printf("%d", arr[i]);

}
printf("\n");

} /* end of main() */

cs3157-spring2005-sklar-perl 6� �

� �

pointers overview.

� a pointer contains the address of an object (but not in the OOP sense)

� allows one to access object “indirectly”

� & = unary operator that gives address of its argument

� * = unary operator that fetches contents of its argument (i.e., its argument is an address)

� note that & and * bind more tightly than arithmetic operators

� you can print the value of a pointer with the formatting character %p

� example: pointers.c

cs3157-spring2005-sklar-perl 7� �
� �

pointers (1).
� variables that contain memory addresses as their values

� other data types we’ve learned about in C use direct addressing

� pointers facilitate indirect addressing

� declaring pointers:

– pointers indirectly address memory where data of the types we’ve already discussed
is stored (e.g., int, char, float, etc.)

– declaration uses asterisks (*) to indicate a pointer to a memory location storing a
particular data type

� example:

int *count;
float *avg;

cs3157-spring2005-sklar-perl 8� �

� �

pointers (2).

� ampersand & is used to get the address of a variable

� example:

int count = 12;
int *countPtr = &count;

� &count returns the address of count and stores it in the pointer variable countPtr

� a picture:
countPtr count� � 12

cs3157-spring2005-sklar-perl 9� �
� �

pointers (3).

here’s another example:

int i = 3, j = -99;
int count = 12;
int *countPtr = &count;

and here’s what the memory looks like:

variable name memory location value

count 0xbffff4f0 12
i 0xbffff4f4 3
j 0xbffff4f8 -99
...
countPtr 0xbffff600 0xbffff4f0
...

cs3157-spring2005-sklar-perl 10� �

� �

pointers (4).

� an array is some number of contiguous memory locations

� an array definition is really a pointer to the starting memory location of the array

� and pointers are really integers

� so you can perform integer arithmetic on them

� e.g., +1 increments a pointer, -1 decrements

� you can use this to move from one array element to another

cs3157-spring2005-sklar-perl 11� �
� �

pointers (5).

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main() {
int i, *j, arr[5];
srand(time (NULL));
for (i=0; i<5; i++)
arr[i] = rand() % 100;

printf("arr=%p\n",arr);
for (i=0; i<5; i++) {
printf("i=%d arr[i]=%d &arr[i]=%p\n",i,arr[i],&arr[i]);

}
j = &arr[0];
printf("\nj=%p *j=%d\n",j,*j);
j++;
printf("after adding 1 to j:\n j=%p *j=%d\n",j,*j);

}

cs3157-spring2005-sklar-perl 12� �

� �

pointers (6).

and the output is...

arr=0xbffff4f0
i=0 arr[i]=29 &arr[i]=0xbffff4f0
i=1 arr[i]=8 &arr[i]=0xbffff4f4
i=2 arr[i]=18 &arr[i]=0xbffff4f8
i=3 arr[i]=95 &arr[i]=0xbffff4fc
i=4 arr[i]=48 &arr[i]=0xbffff500

j=0xbffff4f0 *j=29
after adding 1 to j:
j=0xbffff4f4 *j=8

cs3157-spring2005-sklar-perl 13� �
� �

dynamic memory allocation overview.

� used when you don’t know at compile-time how much memory to allocate

� pre-allocated memory comes from the “stack”

� dynamically allocated memory comes from the “heap”

� family of functions in stdlib, including:

void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void free(void *);

� malloc and realloc return a generic pointer (void *) and you have to “cast” the
return to the type of pointer you want

� example: malloc.c

cs3157-spring2005-sklar-perl 14� �

� �

dynamic memory allocation (1).

� malloc() allocates a block of memory:

void *malloc(size_t size);

� lifetime of the block is until memory is freed, with free():

void free(void *ptr);

� example:

int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

cs3157-spring2005-sklar-perl 15� �
� �

dynamic memory allocation (2).
� memory leaks — memory allocated that is never freed:

char *combine(char *s, char *t) {
u = (char *)malloc(strlen(s) + strlen(t) + 1);
if (s != t) {

strcpy(u, s);
strcat(u, t);
return u;

}
else {

return 0;
}

} /* end of combine() */

� u should be freed if return 0; is executed

� but you don’t need to free it if you are still using it!

cs3157-spring2005-sklar-perl 16� �

� �

dynamic memory allocation (3).

� note: malloc() does not initialize data

� you can allocate and initialize with “calloc”:

void *calloc(size_t nmemb, size_t size);

– calloc allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero.

� you can also change size of allocated memory blocks with “realloc”:

void *realloc(void *ptr, size_t size);

– realloc changes the size of the memory block pointed to by ptr to size bytes. The
contents will be unchanged to the minimum of the old and new sizes; newly allocated
memory will be uninitialized.

� these are all functions in stdlib.h

� for more information: unix$ man malloc

cs3157-spring2005-sklar-perl 17� �
� �

dynamically allocated arrays (1).

� “arrays” are defined by specifying an element type and number of elements

– statically:

int vec[100];
char str[30];
float m[10][10];

– dynamically:

int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

� for an array containing N elements, indeces are 0..N-1

� stored as a linear arrangement of elements

� often similar to pointers

cs3157-spring2005-sklar-perl 18� �

� �

dynamically allocated arrays (2).

� C does not remember how large arrays are (i.e., no length attribute, unlike Java)

� given:

int x[10];
x[10] = 5; /* error! */

� ERROR! because you have only defined x[0]..x[9] and the memory location where x[10]
is can become something else...

� sizeof x gives the number of bytes in the array

� sizeof x[0] gives the number of bytes in one array element

� thus you can compute the length of x via:

int length_x = sizeof x / sizeof x[0];

cs3157-spring2005-sklar-perl 19� �
� �

dynamically allocated arrays (3).
� when an array is passed as a parameter to a function:

– the size information is not available inside the function

– array size is typically passed as an additional parameter

printArray(x, length_x);

– or globally

#define VECSIZE 10
int x[VECSIZE];

cs3157-spring2005-sklar-perl 20� �

� �

dynamically allocated arrays (4).

� array elements are accessed using the same syntax as in Java: array[index]

� C does not check whether array index values are sensible (i.e., no bounds checking)

� e.g., x[-1] or vec[10000] will not generate a compiler warning!

� if you’re lucky, the program crashes with

Segmentation fault (core dumped)

cs3157-spring2005-sklar-perl 21� �
� �

dynamically allocated arrays (5).

� C references arrays by the address of their first element

� array is equivalent to &array[0]

� you can iterate through arrays using pointers as well as indexes:

int *v, *last;
int sum = 0;
last = &x[length_x-1];
for (v = x; v <= last; v++)
sum += *v;

cs3157-spring2005-sklar-perl 22� �

� �

dynamically allocated arrays (6).

� example:

#include <stdio.h>
#define MAX 12
int main(void) {
int x[MAX]; /* declare 12-element array */
int i, sum;
for (i=0; i<MAX; i++) { x[i] = i; }
/* here, what is value of i? of x[i]? */
sum = 0;
for (i=0; i<MAX; i++) { sum += x[i]; }
printf("sum = %d\n",sum);

} /* end of main() */

cs3157-spring2005-sklar-perl 23� �
� �

dynamically allocated arrays (7).
� another example:

#include <stdio.h>
#define MAX 10
int main(void) {
int x[MAX]; /* declare 10-element array */
int i, sum, *p;
p = &x[0];
for (i=0; i<MAX; i++) { *p = i + 1; p++; }
p = &x[0];
sum = 0;
for (i=0; i<MAX; i++) { sum += *p; p++; }
printf("sum = %d\n",sum);

} /* end of main() */

cs3157-spring2005-sklar-perl 24� �

� �

2-dimensional arrays.

� 2-dimensional arrays

int weekends[52][2];

[0][0] [0][1] [1][0] [1][1] [2][0] [2][1] [3][0] ...

�

weekends

� you can use indices or pointer math to locate elements in the array

– weekends[0][1]

– weekends+1

� weekends[2][1] is same as *(weekends+2*2+1), but NOT the same as
*weekends+2*2+1 (which is an integer)!

cs3157-spring2005-sklar-perl 25� �
� �

functions (1).

� similar to methods in java

� but there aren’t classes in C

� and functions can’t be overloaded

� syntax:

<type> name(argument-list-if-any)
argument-declarations-if-any;
{
function-body;
return [<expression>];

}

or

<type> name(argument-list-if-any-including-declarations) {
function-body;
return [<expression>];

}

cs3157-spring2005-sklar-perl 26� �

� �

functions (2).

� a program is just a set of individual function definitions

� char promotes to int in any expression, so k&r says you don’t need to define
functions that return char (only int)

� int is the default return type

� function arguments are “passed by value”

� the function receives a temporary copy of the value of the argument (not the argument’s
address)

� functions with a variable number of arguments use the first argument to tell it how many
arguments will follow (e.g., printf)

� function arguments

– since function arguments are “passed by value”, you can use pointers to have a
function change the value of a variable

� example: swap.c

cs3157-spring2005-sklar-perl 27� �

