
� �

cs3157: unix lecture (mon-21-mar-2005)

� today:

– C programs with multiple files

– regular expressions

– filters (cut, grep, sed, sort, wc)

– sh scripts

cs3157-spring2005-sklar-unix 1� �

� �

C programs with multiple files.

� sometimes it is more convenient to write a program in more than one source file

� this is especially where header files (.h) come in handy

� I divided the struct4.c example from last class into 3 files:

– person.h: which contains the constant (#define) and data type (typedef)
definitions and function prototypes for functions that operate on the data structures
defined in this header file

– person.c: which contains the function definitions for the functions that operate on
the data structures defined in person.h;

– pmain.c: which contains the main program

� note that person.c and person.h go together!

� the program is built using the compiler (gcc -c) and linker (gcc) separately:

gcc -c person.c -o person.o
gcc -c pmain.c -o pmain.o
gcc person.o pmain.o -o pmain

cs3157-spring2005-sklar-unix 2� �

� �

regular expressions

� describe patterns or sequences of characters

� aka pattern matching

� expression � it gets evaluated

� basic operator is concatenation

� example:

ABC

matches A followed by B followed by C

� case sensitive!
i.e., does not match a followed by b followed by c

� programs that use regular expressions evaluate them first, then seek matches

– examples: perl, grep, sed, awk

cs3157-spring2005-sklar-unix 3� �

� �

regular expressions – pattern matching
� example: match the pattern

your
with the input line:
Do you like my hat?

� 1. compare y with D

� 2. compare y with o

� 3. compare y with

�

(space)

� 4. compare y with y — aha!

� 5. compare o with o — aha!

� 6. compare u with u — aha!

� 7. compare r with

�

(space) — bummer :-(

cs3157-spring2005-sklar-unix 4� �

� �

regular expressions – basic format

� character sets: matches one or more characters in a single position

� modifiers: specifies how many times the previous character set is repeated

� anchors: specifies the position of a pattern in relation to a line of text

� use backslash (\) to match special characters

cs3157-spring2005-sklar-unix 5� �

� �

regular expressions – meta-characters

� meta-characters provide the real power to regular expressions
“i never meta-character i didn’t like...”

– dot (.) matches any single character

– asterisk (*) matches zero or more occurrences of the preceding regular expression
(NOT the same as * wildcard in shells!!)

– plus (

�

) matches any single character one or more times

cs3157-spring2005-sklar-unix 6� �

� �

regular expressions – anchors

� anchors: specifies the position of a pattern in relation to a line of text

� caret (ˆ) means beginning of the line (but only if used as the first character in the regular
expression)

� dollar sign ($) means end of the line (but only if used as the last character in the regular
expression)

cs3157-spring2005-sklar-unix 7� �

� �

regular expressions – ranges
� use square brackets ([]) to specify a range of characters, e.g.:

– [abc]

– ˆ[abc]

– ˆ[abc]$

� use hyphen (-) inside the square brackets to include all characters between starting and
ending characters, e.g.:

– [a-c]

– [0-9]

– ˆ[a-z]

– ˆ[a-z]$

� use carat (ˆ) inside the square brackets to match characters EXCEPT those specified,
e.g.:

– [ˆabc]

– [ˆ0-9]

cs3157-spring2005-sklar-unix 8� �

� �

meta-character examples

what matches the following?

AE
A.E
A*E
AE*
A.*E
A*.E
A.E*
A*E.

cs3157-spring2005-sklar-unix 9� �

� �

input:

AE
ABE
ABBE
A
E
B

solution:

AE matches: AE and not: ABE ABBE A E B
A.E matches: ABE and not: AE ABBE A E B
A*E matches: AE ABE ABBE E and not: A B
AE* matches: AE ABE ABBE A and not:
A.*E matches: AE ABE ABBE and not: A E B
A*.E matches: AE ABE ABBE and not: A E B
A.E* matches: AE ABE ABBE and not: A E B
A*E. matches: and not: AE ABE ABBE A E B

cs3157-spring2005-sklar-unix 10� �

� �

anchor examples

what matches the following?

ˆA
A$
ˆA*
A*$
A.$

cs3157-spring2005-sklar-unix 11� �

� �

input:

AE
ABE
ABBE
A
E
B

solution:

ˆA matches: AE ABE ABBE A and not: E B
A$ matches: A and not: AE ABE ABBE E B
ˆA* matches: AE ABE ABBE A E B and not:
A*$ matches: AE ABE ABBE A E B and not:
A.$ matches: AE and not: ABE ABBE A E B

cs3157-spring2005-sklar-unix 12� �

� �

examples – you try it

� what is the regular expression to match all lines that start with a vowel?

� what is the regular expression to match all lines that end with a digit?

� what is the regular expression to match all lines that do not contain an underscore (_)?

cs3157-spring2005-sklar-unix 13� �

� �

filters.

� wc – counts characters, words and lines in input

� grep – matches regular expression patterns in input

� cut – extracts portions of each line from input

� sort – sorts lines of input

� sed – stream edits input

cs3157-spring2005-sklar-unix 14� �

� �

wc

� unix command: counts the number of characters/words/lines in its input

� input can be a file or a piped command (see below)

� example:
filename = “hello.dat”

hello
world

usage:

unix-prompt$ wc hello.dat
2 2 12 hello.dat

unix-prompt$ wc -l hello.dat
2 hello.dat

unix-prompt$ wc -c hello.dat
12 hello.dat

unix-prompt$ wc -w hello.dat
2 hello.dat

cs3157-spring2005-sklar-unix 15� �

� �

grep (1)
� Global Regular Expression Parser

� one of the most useful tools in unix

� three standard versions:

– plain old grep

– extended grep: egrep

– fast grep: fgrep

� used to search through files for ... regular expressions!

� prints only lines that match given pattern

� a kind of filter

� BUT it’s line oriented

cs3157-spring2005-sklar-unix 16� �

� �

grep (2)

� input can be one or more files or can be piped into grep

� examples:
grep "ˆ[aeiou]" myfile
ls -1 | grep t

� useful options:
-i —- ignore case
-w —- match pattern as a word
-l —- return only the filename if there’s a match
-v —- reverse the normal action (i.e., return what doesn’t match)

cs3157-spring2005-sklar-unix 17� �

� �

grep (3)

� examples:
grep -i "ˆ[aeiou]" myfile
grep -v "ˆ[aeiou]" myfile
grep -iv "ˆ[aeiou]" myfile

� how do you list all lines containing a digit?

� how do you list all lines containing a 5?

� how do you list all lines containing a 0?

� how do you list all lines containing 50?

� how do you list all lines containing a 5 and an 0?

cs3157-spring2005-sklar-unix 18� �

� �

cut

� unix command: extracts portions of each line from input

� input can be a file or a piped command (see below)

� syntax: cut <-c|f> <-d>
note that c and +f+ start with 1; default delimiter is TAB

� example:
filename = “snowy”

There was movement at the station, for the word had passed around
That the colt from old Regret had got away
And had joined the wild bush horses -- he was worth a thousand pound,
So all the cracks had gathered to the fray.
All the tried and noted riders from the station near and far
Had mustered at the homestead overnight,
For the bushmen love hard riding where the wild bush horses are,
And the stock-horse snuffs the battle with delight.

usage:

cs3157-spring2005-sklar-unix 19� �

� �

unix-prompt$ cut -c1 snowy
T
T
A
...
unix-prompt$ cut -f1 -d’ ’ snowy
There
That
And
...

cs3157-spring2005-sklar-unix 20� �

� �

sort

� unix command: sorts lines of input

� input can be a file or a piped command (see below)

� three modes: sort, check (sort -c), merge (sort -m)

� syntax: sort <-t> <-n> <-r> <-o> POS1 -POS2+
note that POS starts with 0; default delimiter is whitespace

� example:

unix-prompt$ sort snowy
All the tried and noted riders from the station near and far
And had joined the wild bush horses -- he was worth a thousand pound,
And the stock-horse snuffs the battle with delight.
...
unix-prompt$ sort +2 -3 snowy
Had mustered at the homestead overnight,
For the bushmen love hard riding where the wild bush horses are,
That the colt from old Regret had got away

cs3157-spring2005-sklar-unix 21� �

� �

sed (1)

� stream editor

� does not change the file it “edits”

� commands are implicitly global

� input can be a file or can be piped into sed

� example: substitute all A for B:
sed ’s/A/B/’ myfile
cat myfile | sed ’s/A/B/’

� use the -e option to specify more than one command at a time:
sed -e ’s/A/B/’ -e ’s/C/D/’ myfile

� pipe output to a file in order to save it:
sed -e ’s/A/B/’ -e ’s/C/D/’ myfile >mynewfile

cs3157-spring2005-sklar-unix 22� �

� �

sed (2)

� sed can specify an address of the line(s) to affect

� if no address is specified, then all lines are affected

� if there is one address, then any line matching the address is affected

� if there are two (comma separated) addresses, then all lines between the two addresses
are affected

� if an exclamation mark (!) follows the address, then all lines that DON’T match the
address are affected

� addresses are used in conjunction with commands

� examples (using the delete (d) command):
sed ’$d’ myfile
sed ’/ˆ$/d’ myfile
sed ’1,/under/d’ myfile
sed ’/over/,/under/d’ myfile

cs3157-spring2005-sklar-unix 23� �

� �

sed (3)
� order of commands is important

� input is line oriented

� all editing commands are applied to each line, one at a time

� then next line is read and editing commands are applied to that linei

� etc

� for example:
sed -e ’s/pig/cow/’ -e ’s/cow/horse’ myfile

what does this do?
is this right???

cs3157-spring2005-sklar-unix 24� �

� �

sed (4)

� delimiter is slash (/)

� backslash (escape) it if it appears in the command, e.g.:
sed ’s/\/usr\/bin\//\/usr\/etc/’ myfile

cs3157-spring2005-sklar-unix 25� �

� �

sed (5)

� meta-character ampersand (&) represents the extent of the pattern matched

� example:
sed ’s/[0-9]/#&/’ myfile

what does this do?

� you can also save portions of the matched pattern:
sed ’s/\([0-9]\)/#\1/’ myfile
sed ’s/\([0-9]\)\([0-9]\)/#\1-\2/’ myfile

cs3157-spring2005-sklar-unix 26� �

� �

sed (6)

� transformation command: y

� example:
sed ’y/ABC/abc’ myfile

cs3157-spring2005-sklar-unix 27� �

� �

sed (7)
� print command: p

� example:
sed ’/begin/,/end/p’ myfile
sed -n ’/begin/,/end/p’ myfile

cs3157-spring2005-sklar-unix 28� �

� �

sed (8)

� examples: what do the following sed commands do?
sed ’s/xx/yy’ myfile
sed ’/BSD/d’ myfile
sed ’/ˆBEGIN/,/ˆEND/p@’ myfile

� how do you change the content of all your html files to lowercase?

� how do you change all the html commands to lowercase?

cs3157-spring2005-sklar-unix 29� �

� �

sh (1)

� sh is the “Bourne shell”, the first scripting language

� it is a program that interprets your command lines and runs other programs

� it can invoke Unix commands and also has its own set of commands

� example:

while (1) {
print prompt and wait for user to enter input;
read input from terminal;
parse into words;
substitute variables;
execute commands (execv or builtin);

}

cs3157-spring2005-sklar-unix 30� �

� �

sh (2)

� shell commands can be read:

– from a terminal � interactive

– from a file � shell script

� search path

– the place where the shell looks for the commands it runs

– should include standard directories:

� /bin

� /usr/bin

– it should also include your current working directory ()

cs3157-spring2005-sklar-unix 31� �

� �

sh (3)
� are you runnning the Bourne shell?

– type:
unix-prompt# echo $SHELL

– if the answer is /bin/sh, then you are

– if the answer is /bin/bash, then that’s close enough

– otherwise, you can start the Bourne shell by typing sh at the UNIX prompt

– enter Ctrl-D or exit to exit the Bourne shell and go back to whatever shell you
were running before...

cs3157-spring2005-sklar-unix 32� �

� �

sh (4)

� capable of both synchronous and asynchronous execution

– synchronous: wait for completion

– asychronous: in parallel with shell (runs in the background)

� allows control of stdin, stdout, stderr

� enables environment setting for processes (using inheritance between processes)

� sets default directory

cs3157-spring2005-sklar-unix 33� �

� �

sh (5)

� creating your own shell scripts

� naming:

– DON’T ever name your script (or any executable file) “test”

– since that’s a sh command

� executing

– the notation #! inside your file tells UNIX which shell should execute the commands
in your file

� example — create a file called “myscript.sh”

#!/bin/sh
echo hello world

� make the script executable: unix-prompt# chmod +x myscript.sh

� execute the script: unix-prompt# ./myscript.sh or just unix-prompt#
myscript.sh

(note that unix-prompt# means the unix prompt, like unix$ or bash#)

cs3157-spring2005-sklar-unix 34� �

� �

sh (6) — quoting

� quote (’)
’something’: preserve everything literally and don’t evaluate anything that is inside
the quotes

� double quote (")
"something": preserve most things literally, but also allow $ variable expansion (but
not ’ evaluation)

� backquote (‘)
‘something‘: try to execute something as a command

cs3157-spring2005-sklar-unix 35� �

� �

sh (7) — quoting example
� filename=t.sh

#!/bin/sh
hello="hi"
echo 0=$hello
echo 1=’$hello’
echo 2="$hello"
echo 3=‘$hello‘
echo 4="‘$hello‘"
echo 5="’$hello’"

� filename=hi

#!/bin/sh
echo "how did you get in here?"

� output=

unix$ t.sh
0=hi
1=$hello
2=hi
3=how did you get in here?
4=how did you get in here?
5=’hi’

cs3157-spring2005-sklar-unix 36� �

� �

sh (8) — comments

� single line comments only (no multi-line comments)

� line begins with # character

cs3157-spring2005-sklar-unix 37� �

� �

sh (9) — simple commands

� sequence of words

� first word defines command

� can be combined with &&, ||, ;

– to execute commands sequentially:
cmd1; cmd2;

– to execute a command in the background :
cmd1&

– to execute two commands asynchronously:
cmd1&
cmd2&

– to execute cmd2 if cmd1 has zero exit status:
cmd1 && cmd2

– to execute cmd2 only if cmd1 has non-zero exit status:
cmd1 || cmd2

� set exit status using exit command (e.g., exit 0 or exit 1)

cs3157-spring2005-sklar-unix 38� �

� �

sh (10) — pipes

� sequence of commands

� connected with |

� each command reads previous command’s output and takes it as input

� example:

unix-prompt# echo "hello world" | wc -w
2

cs3157-spring2005-sklar-unix 39� �

� �

sh (11) — shell variables
� variables are placeholders for values

� shell does variable substitution

� $var or $

�

var

�

is the value of the variable

� assignment:

– var=value (with no spaces before or after!)

– let "var = value"

– export var=value

� BUT values go away when shell is done executing

� uninitialized variables have no value

� variables are untyped, interpreted based on context

� standard shell variables:

– $

�

N

�

= shell Nth parameter

– $$ = process ID

– $? = exit status

cs3157-spring2005-sklar-unix 40� �

� �

sh (12) — shell variables example

� filename=u.sh

#!/bin/sh
echo 0=$0
echo 1=$1
echo 2=$2
echo 3=$$
echo 4=$?

� output

unix$ u.sh
0=.//u.sh
1=
2=
3=21093
4=0

unix$ u.sh abc 23
0=.//u.sh
1=abc
2=23
3=21094
4=0

cs3157-spring2005-sklar-unix 41� �

� �

sh (13) — environment variables

� shell variables are generally not visible to programs

� environment variables are a list of name/value pairs passed to sub-processes

� all environment variables are also shell variables,
but not vice versa

� show with env or echo $var

� standard environment variables include:

– HOME = home directory

– PATH = list of directories to search

– TERM = type of terminal (vt100, ...)

– TZ = timezone (e.g., US/Eastern)

� example:

unix-prompt# echo $TERM
vt100

cs3157-spring2005-sklar-unix 42� �

� �

sh (14) — looping constructs

� similar to C/Java constructs, but with commands

� until test-commands; do consequent-commands; done

� while test-commands; do consequent-commands; done

� for name [in words ...]; do commands; done

� also on separate lines

� break and continue control loop

cs3157-spring2005-sklar-unix 43� �

� �

sh (15) — loop examples
� while

i=0
while [$i -lt 10]; do
echo "i=$i"
((i=$i+1)) # same as let "i=$i+1"

done

� for

for counter in ‘ls *.c‘; do
echo $counter

done

cs3157-spring2005-sklar-unix 44� �

� �

sh (16) — if

� syntax

if test-commands; then
consequent-commands;
[elif more-test-commands; then

more-consequents;]
[else alternate-consequents;]

fi

� colon (:) is a null command

� example

#!/bin/sh
if expr $TERM = "xterm"; then

echo "hello xterm";
else

echo "something else";
fi

cs3157-spring2005-sklar-unix 45� �

� �

sh (17) — case

� example:

case test-var in
value1) consequent-commands;;
value2) consequent-commands;;
*) default-commands;
esac

� pattern matching:

– ?) matches a string with exactly one character

– ?*) matches a string with one or more characters

– [yY]|[yY][eE][sS]) matches y, Y, yes, YES, yES...

– /*/*[0-9]) matches filename with wildcards like /xxx/yyy/zzz3

– notice two semi-colons at the end of each clause

– stops after first match with a value

– you don’t need double quotes to match string values!

cs3157-spring2005-sklar-unix 46� �

� �

sh (18) — case example

#!/bin/sh
case "$TERM" in
xterm) echo "hello xterm";;
vt100) echo "hello vt100";;
*) echo "something else";;
esac

cs3157-spring2005-sklar-unix 47� �

� �

sh (19) — expansion
� biggest difference from traditional programming languages

� shell substitutes and executes

� order:

– brace expansion

– tilde expansion

– parameter and variable expansion

– command substitution

– arithmetic expansion

– word splitting

– filename expansion

cs3157-spring2005-sklar-unix 48� �

� �

sh (20) — brace expansion

� expand comma-separated list of strings into separate words:

unix-prompt# echo a{d,c,b}e
ade ace abe

� useful for generating list of filenames:

unix-prompt# mkdir hw{1,2,3}
unix-prompt# ls
hw1 hw2 hw3

cs3157-spring2005-sklar-unix 49� �

� �

sh (21) — tilde expansion

� ˜ expands to $HOME

� examples:
˜cs3157

�

/home/cs3157
˜/html

�

/home/sklar/html

cs3157-spring2005-sklar-unix 50� �

� �

sh (22) — command substitution

� replace $(command) or ‘command‘ by stdout of executing command

� can be used to execute content of variables:

unix$ x=ls
unix$ $x
myfile.c
a.out
unix$ echo $x
ls
unix$ echo ‘ls‘
myfile.c
a.out
unix$ echo ‘x‘
sh: x: command not found
unix$ echo ‘$x‘
myfile.c
a.out
unix$ echo $(ls)
myfile.c
a.out
unix$ echo $(x)
sh: x: command not found
unix$ echo $($x)
myfile.c
a.out

cs3157-spring2005-sklar-unix 51� �

� �

sh (23) — filename expansion
� any word containing *?([is considered a pattern

� * matches any string

� ? matches any single character

� [...] matches any of the enclosed characters

unix$ ls
myfile.c
a.out
a.b
unix$ ls a*
a.out
a.b
unix$ ls a?
ls: No match.
unix$ ls a.*
a.out
a.b
unix$ ls a.?
a.b
unix$ ls a.???
a.out
unix$ ls [am].b
a.b

cs3157-spring2005-sklar-unix 52� �

� �

sh (24) — redirections

� stdin, stdout and stderr may be redirected

� < redirects stdin (0) to come from a file

� > redirects stdout (1) to go to file

� >> appends stdout to the end of a file

� &> redirects stderr (2)

� >& redirects stdout and stderr, e.g.: 2>&1 sends stderr to the same place that
stdout is going

� << gets input from a here document, i.e., the input is what you type, rather than reading
from a file

cs3157-spring2005-sklar-unix 53� �

� �

built-in commands (1)

� alias, unalias — create or remove a pseudonym or shorthand for a command or
series of commands

� jobs, fg, bg, stop, notify — control process execution

� command — execute a simple command

� cd, chdir, pushd, popd, dirs — change working directory

� echo — display a line of text

� history, fc — process command history list

� set, unset, setenv, unsetenv, export — shell built-in functions to
determine the characteristics for environmental variables of the current shell and its
descendents

� getopts — parse utility options

� hash, rehash, unhash, hashstat — evaluate the internal hash table of the
contents of directories

� kill — send a signal to a process

cs3157-spring2005-sklar-unix 54� �

� �

built-in commands (2)

� pwd — print name of current/working directory

� shift — shell built-in function to traverse either a shell’s argument list or a list of
field-separated words

� readonly — shell built-in function to protect the value of the given variable from
reassignment

� source — execute a file as a shell script

� suspend — shell built-in function to halt the current shell

� test — check file types and compare values

� times — shell built-in function to report time usages of the current shell

� trap, onintr — shell built-in functions to respond to (hardware) signals

� type — write a description of command type

� typeset, whence — shell built-in functions to set/get attributes and values for shell
variables and functions

cs3157-spring2005-sklar-unix 55� �

� �

built-in commands (3)
� limit, ulimit, unlimit — set or get limitations on the system resources

available to the current shell and its descendents

� umask — get or set the file mode creation mask

cs3157-spring2005-sklar-unix 56� �

