
� �

cs3157: software engineering and c++ lecture #1 (mon-4-apr-2005)

� today:

– software engineering basics

– c++

cs3157-spring2005-sklar-cpp 1� �

� �

software engineering: what is it?

� Stephen Schach: “Software engineering is a discipline whose aim is the production of
fault-free software, delivered on time and within budget, that satisfies the user’s needs.”

� includes:

– requirements analysis

– human factors

– functional specification

– software architecture

– design methods

– programming for reliability

– programming for maintainability

– team programming methods

– testing methods

– configuration management

cs3157-spring2005-sklar-cpp 2� �

� �

software engineering: why?

� in school, you learn the mechanics of programming

� you are given the specifications

� you know that it is possible to write the specified program in the time allotted

� but not so in the real world...

– what if the specifications are not possible?

– what if the time frame is not realistic?

– what if you had to write a program that would last for 10 years?

� in the real world:

– software is usually late, overbudget and broken

– software usually lasts longer than employees or hardware

� the real world is cruel and software is fundamentally brittle

cs3157-spring2005-sklar-cpp 3� �

� �

software engineering: who?
� the average manager has no idea how software needs to be implemented

� the average customer says: “build me a system to do X”

� the average layperson thinks software can do anything (or nothing)

� most software ends up being used in very different ways than how it was designed to be
used

cs3157-spring2005-sklar-cpp 4� �

� �

software engineering: time.

� you never have enough time

� software is often underbudgeted

� the marketing department always wants it tomorrow

� even though they don’t know how long it will take to write it and test it

� “Why can’t you add feature X? It seems so simple...”

� “I thought it would take a week...”

� “We’ve got to get it out next week. Hire 5 more programmers...”

cs3157-spring2005-sklar-cpp 5� �

� �

software engineering: people.

� you can’t do everything yourself

� e.g., your assignment: “write an operating system”

� where do you start?

� what do you need to write?

� do you know how to write a device driver?

� do you know what a device driver is?

� should you integrate a browser into your operating system?

� how do you know if it’s working?

cs3157-spring2005-sklar-cpp 6� �

� �

software engineering: complexity.

� software is complex!

� or it becomes that way

– feature bloat

– patching

� e.g., the evolution of Windows NT

– NT 3.1 had 6,000,000 lines of code

– NT 3.5 had 9,000,000

– NT 4.0 had 16,000,000

– Windows 2000 has 30-60 million

– Windows XP has at least 45 million...

cs3157-spring2005-sklar-cpp 7� �

� �

software engineering: necessity.
� you will need these skills!

� risks of faulty software include

– loss of money

– loss of job

– loss of equipment

– loss of life

cs3157-spring2005-sklar-cpp 8� �

� �

examples: therac-25 (1).

� http://sunnyday.mit.edu/papers/therac.pdf

� therac-25 was a linear accelerator released in 1982 for cancer treatment by releasing
limited doses of radiation

� it was software-controlled as opposed to hardware-controlled (previous versions of the
equipment were hardward-controlled)

� it was controlled by a PDP-11; software controlled safety

� in case of error, software was designed to prevent harmful effects

cs3157-spring2005-sklar-cpp 9� �

� �

examples: therac-25 (2).

� BUT

� in case of software error, cryptic codes were displayed to the operator, such as:
“MALFUNCTION xx”
where

� � � � � � �

� operators became insensitive to these cryptic codes

� they thought it was impossible to overdose a patient

� however, from 1985-1987, six patients received massive overdoses of radiation and
several died

cs3157-spring2005-sklar-cpp 10� �

� �

examples: therac-25 (3).

� main cause:

� a race condition often happened when operators entered data quickly, then hit the
up-arrow key to correct the data and the values were not reset properly

� the manufacturing company never tested quick data entry — their testers weren’t that
fast since they didn’t do data entry on a daily basis

� apparently the problem had existed on earlier models, but a hardware interlock
mechanism prevented the software race condition from occurring

� in this version, they took out the hardware interlock mechanism because they trusted the
software

cs3157-spring2005-sklar-cpp 11� �

� �

examples: ariane 501 (1).
� next-generation launch vehicle, after ariane 4

� presigious project for ESA

� maiden flight: june 4, 1996

� inertial reference system (IRS), written in ada

– computed position, velocity, acceleration

– dual redundancy

– calibrated on launch pad

– relibration routine runs after launch (active but not used)

� one step in recalibration converted floating point value of horizontal velocity to integer

� ada automatically throws out of bounds exception if data conversion is out of bounds

� if exception isn’t handled... IRS returns diagnostic data instead of position, velocity,
acceleration

cs3157-spring2005-sklar-cpp 12� �

� �

examples: ariane 501 (2).

� perfect launch

� ariane 501 flies much faster than ariane 4

� horizontal velocity component goes out of bounds

� IRS in both main and redundant systems go into diagnostic mode

� control system receives diagnotic data but interprets it as wierd position data

� attempts to correct it...

� ka-boom!

� failure at altitiude of 2.5 miles

� 25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid propellant

cs3157-spring2005-sklar-cpp 13� �

� �

examples: ariane 501 (3).

� expensive failure:

– ten years

– $7 billion

� horizontal velocity conversion was deliberately left unchecked

� who is to blame?

� “mistakes were made”

� software had never been tested with actual flight parameters

� problem was easily reproduced in simulation, after the fact

cs3157-spring2005-sklar-cpp 14� �

� �

the mythical man-month.

� Fred Brooks (1975)

� book written after his experiences in the OS/360 design

� major themes:

– Brooks’ Law: “Adding manpower to a late software project makes it later.”

– the “black hole” of large project design: getting stuck and getting out

– organizing large team projects and communication

– documentation!!!

– when to keep code; when to throw code away

– dealing with limited machine resources

� most are supplemented with practical experience

cs3157-spring2005-sklar-cpp 15� �

� �

no silver bullet.
� paper written in 1986 (Brooks)

� “There is no single development, in either technology or management technique, which
by itself promises even one order-of magnitude improvement within a decade of
productivity, in reliability, in simplicity.”

� why? software is inherently complex

� lots of people disagree(d), but there is no proof of a counter-argument

� Brooks’ point: there is no revolution, but there is evolution when it comes to software
development

cs3157-spring2005-sklar-cpp 16� �

� �

mechanics.

� well-established techniques and methodologies:

– team structures

– software lifecycle / waterfall model

– cost and complexity planning / estimation

– reusability, portability, interoperability, scalability

– UML, design patterns

cs3157-spring2005-sklar-cpp 17� �

� �

team structures.

� why Brooks’ Law?

– training time

– increased communications: pairs grow by �
�

while people/work grows by �

– how to divide software? this is not task sharing

� types of teams

– democratic

– “chief programmer”

– synchronize-and-stabilize teams

– eXtreme Programming teams

cs3157-spring2005-sklar-cpp 18� �

� �

lifecycles.

� software is not a build-one-and-throw-away process

� that’s far too expensive

� so software has a lifecycle

� we need to implement a process so that software is maintained correctly

� examples:

– build-and-fix

– waterfall

cs3157-spring2005-sklar-cpp 19� �

� �

software lifecycle model.
� 7 basic phases (Schach):

– requirements (2%)

– specification/analysis (5%)

– design (6%)

– implementation (module coding and testing) (12%)

– integration (8%)

– maintenance (67%)

– retirement

� percentages in ()’s are average cost of each task during 1976-1981

� testing and documention should occur throughout each phase

� note which is the most expensive!

cs3157-spring2005-sklar-cpp 20� �

� �

requirements phase.

� what are we doing, and why?

� need to determine what the client needs, not what the client wants or thinks they need

� worse — requirements are a moving target!

� common ways of building requirements include:

– prototyping

– natural-language requirements document

� use interviews to get information (not easy!)

� example: your online store

cs3157-spring2005-sklar-cpp 21� �

� �

specification phase.

� the “contract” — frequently a legal document

� what the product will do, not how to do it

� should NOT be:

– ambiguous, e.g., “optimal”

– incomplete, e.g., omitting modules

– contradictory

� detailed, to allow cost and duration estimation

� classical vs object-oriented (OO) specification

– classical: flow chart, data-flow diagram

– object-oriented: UML

� example: your online store

cs3157-spring2005-sklar-cpp 22� �

� �

design phase.

� the “how” of the project

� fills in the underlying aspects of the specification

� design decisions last a long time!

� even after the finished product

– maintenance documentation

– try to leave it open-ended

� architectural design: decompose project into modules

� detailed design: each module (data structures, algorithms)

� UML can also be useful for design

� example: your online store

cs3157-spring2005-sklar-cpp 23� �

� �

implementation phase.
� implement the design in programming language(s)

� observe standardized programming mechanisms

� testing: code review, unit testing

� documentation: commented code, test cases

� integration considerations

– combine modules and check the whole product

– top-down vs bottom-up ?

– testing: product and acceptance testing; code review

– documentation: commented code, test cases

– done continually with implementation (can’t wait until the last minute!)

� example: your online store

cs3157-spring2005-sklar-cpp 24� �

� �

maintenance phase.

� defined by Schach as any change

� by far the most expensive phase

� poor (or lost) documentation often makes the situation even worse

� programmers hate it

� several types:

– corrective (bugs)

– perfective (additions to improve)

– adaptive (system or other underlying changes)

� testing maintenance: regression testing (will it still work now that I’ve fixed it?)

� documentation: record all the changes made and why, as well as new test cases

� example: your on-line store — how might the system change once it’s been
implemented?

cs3157-spring2005-sklar-cpp 25� �

� �

retirement phase.

� the last phase, of course

� why retire?

– changes too drastic (e.g., redesign)

– too many dependencies (“house of cards”)

– no documentation

– hardware obsolete

� true retirement rate: product no longer useful

cs3157-spring2005-sklar-cpp 26� �

� �

planning and estimation.

� we still need to deal with the bottom line

– how much will it cost?

– can you stick to your estimate?

– how long will it take?

– can you stick to your estimate?

� how do you measure the product (size, complexity)?

cs3157-spring2005-sklar-cpp 27� �

� �

reusability.
� impediments:

– lack of trust

– logistics of reuse

– loss of knowledge base

– mismatch of features

� how to:

– libraries

– APIs

– system calls

– objects (OOP)

– frameworks (a generic body into which you add your particular code)

cs3157-spring2005-sklar-cpp 28� �

� �

portability.

� Java and C#

� Java: uses a JVM

– write once, run anywhere (sorta, kinda)

� C#: also uses a JVM

– emphasizes mobile data rather than code

� winner?

– betting against Microsoft is historically a losing proposition...

cs3157-spring2005-sklar-cpp 29� �

� �

interoperabilty.

� e.g., CORBA

� define abstract services

� allow programs in any language to access services in any language in any location

� object-ish

cs3157-spring2005-sklar-cpp 30� �

� �

scalability.

� something to keep in mind

� don’t worry about scaling beyond the abilities of the machine

� avoid unnecessary barriers

� from single connection to forking processes to threads...

cs3157-spring2005-sklar-cpp 31� �

� �

introduction to c++
� we focus on differences between c++ and c

� today’s topics:

– history and background

– object-oriented programming with classes

– c++ without classes

� very brief history...

– designed by Bjarne Stroustrop at AT&T Bell Labs in the early 1980’s

– originally developed as “C with classes”

– development period: 1985-1991

– ANSI standard C++ released in 1991

cs3157-spring2005-sklar-cpp 32� �

� �

first program: hello.cpp

#include <iostream.h>
#include <stdio.h>
main() {
cout << "hello world\n";
cout << "hello" << " world" << "\n";
printf("hello yet again!\n");

}

� compile using:

g++ hello.cpp -o hello

� like gcc (default output file is a.out)

cs3157-spring2005-sklar-cpp 33� �

� �

the four main object-oriented programming (OOP) concepts

� abstraction

– creation of well-defined interface for an object, separate from its implementation

– e.g., Vector in Java

– e.g., key functionalities (init, add, delete, count, print) which can be called
independently of knowing how an object is implemented

� encapsulation

– keeping implementation details “private”, i.e., inside the implementation

� hierarchy

– an object is defined in terms of other objects

– composition � larger objects out of smaller ones

– inheritance � properties of smaller objects are “inherited” by larger objects

� polymorphism

– use code “transparently” for all types of same class of object

– i.e., “morph” one object into another object within same hierarchy

cs3157-spring2005-sklar-cpp 34� �

� �

you don’t need typedef in c++

� struct, enum and union tags are type names

struct User {
char *name;
char *password;

};
User myuser;

enum Color { red, white, blue };
Color foreground;

union Token {
int ival;
double dval;
char *sval;

};
Token mytoken;

cs3157-spring2005-sklar-cpp 35� �

� �

iostream: new I/O library
� it’s preferred not to use C’s stdio (though you can), because it’s not “type safe” (i.e.,

compiler can’t tell if you’re passing data of the wrong type, as you know from getting
run-time errors...)

� stdio functions are not extensible

� note << is left-shift operator, which iostream “overloads”

� you can string multiple <<’s together, e.g.:

� cout << "hello" << " world" << "\n";

� cout is like stdout

� cerr is like stderr

� for now, use <stdio> for features like:

– formatting output

– read input

– file I/O

cs3157-spring2005-sklar-cpp 36� �

� �

defining your own functions

� must be declared/defined before it is called

� a function’s “signature” is its name plus number and type of arguments

� you can have multiple functions with same name, as long as the signatures are different

� example:

void foo(int a, char b);
void foo(int a, int b);
void foo(int a);
void foo(double f);
main() {

foo(1,’x’);
foo(1,2);
foo(3);
foo(5.79);

}

� OVERLOADING – when function name is used by more than one function

cs3157-spring2005-sklar-cpp 37� �

� �

NULL

� generic pointer (void *) okay, but explicit cast is needed

� null pointer (0)

– in c, it’s a language macro:
#define NULL (void *)0

– in c++, it’s user defined because otherwise an explicit cast is needed!
#define NULL 0

� but book recommends using 0 instead of NULL

cs3157-spring2005-sklar-cpp 38� �

� �

comparing c and c++

� comments in c++: // and /* */

� you cannot use int variables in c++ as char (like you can in C)

� you cannot use enum vars in c++ as int (like you can in C)

� file suffix convention: .cpp (we’ll use this, but others exist like .cc)

� keywords that are in c++ but not in c:
asm, class, delete, new, private, public, throw, try, catch, friend,
inline, operator, protected, this, template, virtual

cs3157-spring2005-sklar-cpp 39� �

