e N R
€s3157: software engineering and c++ lecture #1 (mon-4-apr-2005) software engineering: what isit?
o Stephen Schach: “Software engineering is a discipline whose aim is the production of
o today: fault-free software, delivered on time and within budget, that satisfies the user’s needs.”
— software engineering basics e includes:
—Ctt - requirements analysis
— human factors
— functional specification
- software architecture
— design methods
— programming for reliability
— programming for maintainability
— team programming methods
— testing methods
— configuration management
¢s3157-5pring2005-sklar-cpp €s3157-spring2005-sklar-cpp
o _J _J
- N I
software engineering: why? software engineering: who?
 in school, you learn the mechanics of programming the average manager has no idea how software needs to be implemented
 you are given the specifications o the average customer says: “build me a system to do X”
e you know that it is possible to write the specified program in the time allotted o the average layperson thinks software can do anything (or nothing)
e but not so in the real world... e most software ends up being used in very different ways than how it was designed to be
— what if the specifications are not possible? used
— what if the time frame is not realistic?
— what if you had to write a program that would last for 10 years?
e in the real world:
- software is usually late, overbudget and broken
— software usually lasts longer than employees or hardware
o the real world is cruel and software is fundamentally brittle
cs3157-5pring2005-sklar-cpp s3157-spring2005-sklar-cpp
- AN J

e N (7 R
software engineering: time. software engineering: people.
® you never have enough time e you can’t do everything yourself
o software is often underbudgeted e e.g., your assignment: “write an operating system”
o the marketing department always wants it tomorrow e where do you start?
o even though they don’t know how long it will take to write it and test it e what do you need to write?
o “Why can’t you add feature X? It seems so simple...” o do you know how to write a device driver?
o “| thought it would take a week...” o do you know what a device driver is?
® “\We’ve got to get it out next week. Hire 5 more programmers...” o should you integrate a browser into your operating system?
« how do you know if it’s working?
s3157-spring2005-sklar-cpp €s3157-spring2005-sklar-cpp
- _/ _/
- N I
software engineering: complexity. software engineering: necessity.
 software is complex! o you will need these skills!
e or it becomes that way o risks of faulty software include
— feature bloat — loss of money
— patching — loss of job
o e.g., the evolution of Windows NT — loss of equipment
— NT 3.1 had 6,000,000 lines of code — loss of life
- NT 3.5 had 9,000,000
— NT 4.0 had 16,000,000
— Windows 2000 has 30-60 million
— Windows XP has at least 45 million...
€s3157-spring2005-sklar-cpp €s3157-spring2005-sklar-cpp
- AN J

e N R
examples: therac-25 (1). examples: therac-25 (2).
e http://sunnyday. nmt. edu/ papers/therac. pdf e BUT
o therac-25 was a linear accelerator released in 1982 for cancer treatment by releasing e in case of software error, cryptic codes were displayed to the operator, such as:
limited doses of radiation “MALFUNCTION xx”
o it was software-controlled as opposed to hardware-controlled (previous versions of the where 1 < zz < 64
equipment were hardward-controlled) e operators became insensitive to these cryptic codes
e it was controlled by a PDP-11; software controlled safety o they thought it was impossible to overdose a patient
e in case of error, software was designed to prevent harmful effects o however, from 1985-1987, six patients received massive overdoses of radiation and
several died
s3157-spring2005-sklar-cpp 9 €s3157-spring2005-sklar-cpp 10
o _J _J
- N I
examples: therac-25 (3). examples: ariane 501 (1).
e main cause: e next-generation launch vehicle, after ariane 4
e a race condition often happened when operators entered data quickly, then hit the e presigious project for ESA
up-arrow key to correct the data and the values were not reset properly o maiden flight: june 4, 1996
o the m_anufacturlr)g company never tested qylck da_1ta entry — their testers weren’t that « inertial reference system (IRS), written in ada
fast since they didn’t do data entry on a daily basis o])
i X . — computed position, velocity, acceleration
o apparently the problem had existed on earlier models, but a hardware interlock
. . . — dual redundancy
mechanism prevented the software race condition from occurring A
o X . X — calibrated on launch pad
e in this version, they took out the hardware interlock mechanism because they trusted the L . .
software — relibration routine runs after launch (active but not used)
e one step in recalibration converted floating point value of horizontal velocity to integer
e ada automatically throws out of bounds exception if data conversion is out of bounds
o if exception isn’t handled... IRS returns diagnostic data instead of position, velocity,
acceleration
©s3157-spring2005-sklar-cpp 11 €s3157-spring2005-sklar-cpp 12
- AN J

examples. ariane 501 (2). examples: ariane 501 (3).
o perfect launch e expensive failure:
e ariane 501 flies much faster than ariane 4 — ten years
o horizontal velocity component goes out of bounds — $7 billion
« IRS in both main and redundant systems go into diagnostic mode « horizontal velocity conversion was deliberately left unchecked
o control system receives diagnotic data but interprets it as wierd position data e who is to blame?
e attempts to correct it... o “mistakes were made”
o ka-boom! software had never been tested with actual flight parameters
o failure at altitiude of 2.5 miles o problem was easily reproduced in simulation, after the fact

o 25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid propellant

N

s3157-spring2005-sklar-cpp 13 €s3157-spring2005-sklar-cpp
- AN
4 N
the mythical man-month. no silver bullet.
e Fred Brooks (1975) e paper written in 1986 (Brooks)
» book written after his experiences in the OS/360 design o “There is no single development, in either technology or management technique, which

by itself promises even one order-of magnitude improvement within a decade of

e major themes:
! productivity, in reliability, in simplicity.”

— Brooks’ Law: “Adding manpower to a late software project makes it later.”
— the “black hole” of large project design: getting stuck and getting out

— organizing large team projects and communication
— documentation!!! e Brooks’ point: there is no revolution, but there is evolution when it comes to software
development

e why? software is inherently complex
o lots of people disagree(d), but there is no proof of a counter-argument

— when to keep code; when to throw code away
— dealing with limited machine resources

o most are supplemented with practical experience

©s3157-spring2005-sklar-cpp 15 €s3157-spring2005-sklar-cpp

- AN

- N A
mechanics. team structures.
o well-established techniques and methodologies: o why Brooks” Law?
— team structures — training time
— software lifecycle / waterfall model — increased communications: pairs grow by n? while people/work grows by n
— cost and complexity planning / estimation — how to divide software? this is not task sharing
— reusability, portability, interoperability, scalability o types of teams
— UML, design patterns — democratic
— “chief programmer”
— synchronize-and-stabilize teams
- eXtreme Programming teams
s3157-spring2005-sklar-cpp 17 €s3157-spring2005-sklar-cpp 18
o _J _J
4 N I
lifecycles. software lifecycle model.
o software is not a build-one-and-throw-away process o 7 basic phases (Schach):
o that’s far too expensive — requirements (2%)
o 50 software has a lifecycle - specification/analysis (5%)
o we need to implement a process so that software is maintained correctly ~ design (6%)
— implementation (module coding and testing) (12%)
e examples: . .
]) — integration (8%)
~ build-and-fix — maintenance (67%)
— waterfall .
— retirement
e percentages in ()’s are average cost of each task during 1976-1981
o testing and documention should occur throughout each phase
e note which is the most expensive!
€s3157-spring2005-sklar-cpp 19 €s3157-spring2005-sklar-cpp 20
- AN J

e N (7 R
requirements phase. specifi cation phase.
e what are we doing, and why? o the “contract” — frequently a legal document
o need to determine what the client needs, not what the client wants or thinks they need e what the product will do, not how to do it
® Worse — requirements are a moving target! o should NOT be:
e common ways of building requirements include: - ambiguous, e.g., “optimal”
— prototyping — incomplete, e.g., omitting modules
- natural-language requirements document — contradictory
o use interviews to get information (not easy!) o detailed, to allow cost and duration estimation
o example: your online store o classical vs object-oriented (OO) specification
— classical: flow chart, data-flow diagram
— object-oriented: UML
e example: your online store
¢s3157-5pring2005-sklar-cpp 21 €s3157-spring2005-sklar-cpp 22
- _/ _/
4 N I
design phase. implementation phase.
o the “how” of the project e implement the design in programming language(s)
« fills in the underlying aspects of the specification o observe standardized programming mechanisms
 design decisions last a long time! e testing: code review, unit testing
e even after the finished product o documentation: commented code, test cases
— maintenance documentation e integration considerations
— try to leave it open-ended — combine modules and check the whole product
e architectural design: decompose project into modules — top-down vs bottom-up ?
o detailed design: each module (data structures, algorithms) — testing: product and acceptance testing; code review
o UML can also be useful for design — documentation: commented code, test cases
« example: your online store — done continually with implementation (can’t wait until the last minute!)
e example: your online store
€s3157-5pring2005-sklar-cpp 23 s3157-spring2005-sklar-cpp 24
- DN J

e N (7 R
mai ntenance phase. retirement phase.
o defined by Schach as any change o the last phase, of course
o by far the most expensive phase o why retire?
o poor (or lost) documentation often makes the situation even worse - changes too drastic (e.g., redesign)
o programmers hate it — too many dependencies (“house of cards”)
o several types: — no documentation
. — hardware obsolete
— corrective (bugs) .
— perfective (additions to improve) e true retirement rate: product no longer useful
— adaptive (system or other underlying changes)
o testing maintenance: regression testing (will it still work now that I’ve fixed it?)
o documentation: record all the changes made and why, as well as new test cases
e example: your on-line store — how might the system change once it’s been
implemented?
s3157-spring2005-sklar-cpp 25 €s3157-spring2005-sklar-cpp 26
o _J _J
- N I
planning and estimation. reusability.
o we still need to deal with the bottom line e impediments:
— how much will it cost? — lack of trust
— can you stick to your estimate? — logistics of reuse
— how long will it take? — loss of knowledge base
— can you stick to your estimate? — mismatch of features
e how do you measure the product (size, complexity)? e how to:
— libraries
— APIs
— system calls
— objects (OOP)
— frameworks (a generic body into which you add your particular code)
€s3157-spring2005-sklar-cpp 27 €s3157-spring2005-sklar-cpp 28
- AN J

e N R
portability. interoperabilty.
e Java and C# e e.g., CORBA
e Java: uses a JVM o define abstract services
— write once, run anywhere (sorta, kinda) o allow programs in any language to access services in any language in any location
o C#: also uses a JVM e object-ish
— emphasizes mobile data rather than code
e winner?
— betting against Microsoft is historically a losing proposition...
s3157-spring2005-sklar-cpp 29 €s3157-spring2005-sklar-cpp 30
o _J _J
- N I
scalability. introduction to c++
e something to keep in mind o we focus on differences between c++ and ¢
e don’t worry about scaling beyond the abilities of the machine o today’s topics:
e avoid unnecessary barriers — history and background
« from single connection to forking processes to threads... — object-oriented programming with classes
— c++ without classes
e very brief history...
— designed by Bjarne Stroustrop at AT&T Bell Labs in the early 1980°’s
— originally developed as “C with classes”
— development period: 1985-1991
— ANSI standard C++ released in 1991
€s3157-spring2005-sklar-cpp 31 €s3157-spring2005-sklar-cpp 32
- AN J

e N (7 R
fi rst program: hello.cpp the four main object-oriented programming (OOP) concepts
#i ncl ude <i ostream h> e abstraction
#include <stdio.h> — creation of well-defined interface for an object, separate from its implementation
mein() { i} —e.g., Vector in Java
cout << . hel | 0" wor | 9\ ns B o - e.g., key functionalities (init, add, delete, count, print) which can be called
cout << "hello" << " world" << "\n"; - - o
. N) N independently of knowing how an object is implemented
printf("hello yet again!'\n");
} e encapsulation
« compile using: — keeping implementation details “private”, i.e., inside the implementation
e hierarchy
g++ hello.cpp -0 hello L o .
— an object is defined in terms of other objects
¢ like gcc (default output file is a. out) — composition — larger objects out of smaller ones
— inheritance — properties of smaller objects are “inherited” by larger objects
e polymorphism
— use code “transparently” for all types of same class of object
—i.e., “morph” one object into another object within same hierarchy
s3157-spring2005-sklar-cpp 33 €s3157-spring2005-sklar-cpp
o _J _J
- N I
you don’t need typedef in c++ iostream: new |/O library
e struct, enumand uni on tags are type names o it’s preferred not to use C’s st di o (though you can), because it’s not “type safe” (i.e.,
struct User { compller can’t tell if you’re passing data of the wrong type, as you know from getting
h run-time errors...)
char *nane;
char *password; e st di o functions are not extensible
h e note << is left-shift operator, which i ost r eam“overloads”
User nyuser; . .
e you can string multiple <<’s together, e.g.:
enum Color { red, white, blue }; ecout << "hello" << " world" << "\n";
Col or foreground; e cout is like st dout
uni on Token { ecerr islikestderr
int ival; o for now, use <st di o> for features like:
doubl e dval ; — formatting output
char *sval; .
}: —read input
Token nyt oken; ~file 1/0
€s3157-spring2005-sklar-cpp 35 €s3157-spring2005-sklar-cpp
- AN J

e N
defi ning your own functions NULL
o must be declared/defined before it is called o generic pointer (voi d *) okay, but explicit cast is needed
e a function’s “signature” is its name plus number and type of arguments null pointer (0)
e you can have multiple functions with same name, as long as the signatures are different —inc, it’s a language macro:
o example: #define NULL (void *)0
void foo(int a char b); —in c++', it’s user defined because otherwise an explicit cast is needed!
void foo(int a int b); #define NULL 0
void foo(int a); o but book recommends using O instead of NULL
void foo(double f);
main() {
foo(1,'x");
foo(1,2);
foo(3);
foo(5.79);
}
o OVERLOADING - when function name is used by more than one function
s3157-spring2005-sklar-cpp 37 €s3157-spring2005-sklar-cpp
o _J
- I
comparing ¢ and c++
e commentsinc++:// and/* */
e you cannot use i nt variables in c++ as char (like you can in C)
e you cannot use enumvars in c++asi nt (like you can in C)
« file suffix convention: .cpp (we’ll use this, but others exist like .cc)
e keywords that are in c++ but not in c:
asmcl ass, del et e, new, private,public,throwtry,catch,friend,
inline operator,protected,this,tenplate,virtual
€s3157-spring2005-sklar-cpp 39
- /

