
Competitive Fitness

Competitive Environments Evolve Better Solutions for Complex Tasks

Peter J. Angeline and Jordan B. Pollack
May 5, 1993

Ali
Artificial Life
Fall 2005

Reminder: Genetic Algorithm

• Generate an initial population of random compositions
and Iteratively perform the following
– Using the fitness measure assign a fitness value to each

individual.
– Create a new population by applying the following operations.

The operations are applied to individuals chosen from the
population with a probability based on fitness.

• (i) Darwinian Reproduction:
• (ii) Crossover:
• (iii) Mutation:

• Genetic Algorithms transform a population of individuals,
each with an associated fitness value, into a new
generation of the population using reproduction,
crossover, and mutation.

Fitness Function

• Fitness Function is any way a GA rates its
individuals for the purposes of creating the next
generation.

• Static Fitness Function
• independent of the contents of the population, and rate

individuals based on closeness to the “goal”.

– Potential Problem
• Knowing something is close to the “goal” requires significant

knowledge about the search space, in general this is as
difficult as knowing the solution.

– Suggested Solution
• Use Competitive Fitness Function

• Applet (Minimum of 1D function)

Competitive Fitness Function

• Measure the individual’s
ability relative to the
current population rather
than the global optima.

• Three types of
competitive fitness
functions
– Full Competition (a)

– Bipartite Competition (b)

– Tournament Fitness (c)

Competitive Fitness Function

• Full Competition (Axelrod 1989)
– Test every population member against every other population

member
• Number of competitions in each generation is n2.

• Bipartite Competition (Hillis 1992)
– Two co-evolving populations, members of one population are

tested against members of the other population.
• Reduce the number of competitions per generation, in Hillis’s case

n/2.

• Tournament Fitness (Angeline and Pollack 1993)
– A single-elimination tournament used to establish relative fitness

ranking. The fitness of an individual is its height in the playoff
tree.

• Number of competitions in each generation is n-1.

Hillis

• Evolve a sorting network for sorting any arrangement of
16 integers using as few comparators as possible.

• In 1980’s using an Independent Fitness Function
– Best evolved sorting network used 65 comparators.

• In 1992 using an Competitive Fitness Function
– The Fitness of the sorting network depended on how well it

solved sorting problems.
– The Fitness of the sorting problem depended on how well it

found flaws in the sorting networks.
– Best evolved sorting network used 61 comparators.

• Note: In 1969 best possible sorting network n = 16 was
discovered that uses only 60 comparators.

Sorting Network

• n unsorted inputs
a1,a2,…, an.

• n sorted outputs
b1<b2<…<bn.

• The set {bi}i=1,..n is the
same as the set
{ai}i=1,,n.

• The network can use
only comparators.

Angeline and Pollack

• Four experiments to evolve a Tic-Tac-Toe player.
• In the first three experiments, players evolved against a static

"expert" strategy
– RAND – choose a legal position at random.
– NEAR – performs near optimally (it can be forked)
– BEST – choose the optimal position to play (unbeatable)

• A individual’s average score over four games is its fitness.

• For the last experiment, evolving programs played against each
other in a tournament structure.
– A program wins against its opponent if it had the greater score after two

games, with each player taking the first move in one game.
• In all experiments

– A programs score is the number of moves it makes, 5 bonus points for a
draw, 20 bonus points for a win.

– Population size of 256, and ran for 150 generations.

Results and Discussion

• The Independent fitness functions were unable to evolve an effective player
– Player evolved against RAND can only beat a random player _ of the time.
– Player evolved against BEST preferred to draw its opponent rather than win, and

lost more than _ of its games against a random player.
– Player evolved against NEAR lost 87% of games against a NEAR player

• The Tournament fitness function evolved a more robust player
– It was able to draw against a perfect player _ of the time.
– It lost less often against the experts than the players evolved against the experts.

Conclusions

• Advantages
– Requires no particular knowledge of the search space.
– Presents an adaptive development environment for the

population. (The fitness landscape evolves along with the
individuals)

– Prevent large portions of the population from getting stuck at
local optima.

– Allows the GA to evolve a more general solution that
approximates the global optima.

• Disadvantage
– Since the population is only being compare with itself it is

possible that the population become specialized at beating itself
(red queen problem).

