
A Competitive Approach toA Competitive Approach to
Game LearningGame Learning

Christopher D. Rosin and Richard K. BelewChristopher D. Rosin and Richard K. Belew

Presenter: Ersin ELBASIPresenter: Ersin ELBASI

IntroductionIntroduction

Machine learningMachine learning is an area of is an area of artificial
intelligenceintelligence concerned with the developmentconcerned with the development
of techniques which allow computers toof techniques which allow computers to
"learn"."learn".

Game learningGame learning is a branch of machine learning is a branch of machine learning
where computers learn to play games.where computers learn to play games.
Number of players and set of strategies forNumber of players and set of strategies for
each player.each player.

IntroductionIntroduction

 Many game learning systems use aMany game learning systems use a
competitive approach that repeatedly learnscompetitive approach that repeatedly learns
new strategies capable of defeating oldernew strategies capable of defeating older
ones.ones.

 Goal is find out strategy learning algorithmGoal is find out strategy learning algorithm
that is able to learn strategies which defeat athat is able to learn strategies which defeat a
given set of opponents.given set of opponents.

 Competitive algorithmCompetitive algorithm repeatly uses a repeatly uses a
strategy learning algorithm to discoverstrategy learning algorithm to discover
strong strategy for the game.strong strategy for the game.

Definition of GamesDefinition of Games

 A game is a function G maps two inputs hA game is a function G maps two inputs h
and x (first and second player strategies),and x (first and second player strategies),
G(h,x).G(h,x).

 First player strategy h comes from set ofFirst player strategy h comes from set of
possible strategies. h possible strategies. h __ H and x H and x __ X. X.

 One bit output gives which player winner.One bit output gives which player winner.

 a > b means strategy a defeats strategya > b means strategy a defeats strategy
b.b.

StructureStructure

Exact learning:Exact learning: It is necessary to assume It is necessary to assume
there is a perfect strategy that defeats allthere is a perfect strategy that defeats all
possible opposing strategies.possible opposing strategies.

There are two main componentsThere are two main components
1.Strategy learning algorithm:1.Strategy learning algorithm:

reinforcement learning, heuristic searchreinforcement learning, heuristic search
etc.etc.

2.Competitive algorithm: Uses the strategy2.Competitive algorithm: Uses the strategy
learning algorithms to produce newlearning algorithms to produce new
strategies. (Do not use domain specificstrategies. (Do not use domain specific
knowledge)knowledge)

How it Works?How it Works?

SamuelSamuel’’s original work on checkers. Gamess original work on checkers. Games
between A and B.between A and B.

 A learns game from reinforcementA learns game from reinforcement
algorithm. This is strategy learningalgorithm. This is strategy learning
algorithm.algorithm.

 When A wins B, B replaced by A.When A wins B, B replaced by A.

 The competitive algorithm uses strategyThe competitive algorithm uses strategy
learning algorithm to find a new Alearning algorithm to find a new A
strategy to win B strategy.And so on.strategy to win B strategy.And so on.

ComplexityComplexity

 Time for a competitive algorithm refers toTime for a competitive algorithm refers to
the total number of strategies consideredthe total number of strategies considered
by it.by it.

 Expected complexity is the lg(H) or lg(X).Expected complexity is the lg(H) or lg(X).

 H and X usually not cover all possibleH and X usually not cover all possible
strategies; all or most.strategies; all or most.

Related WorkRelated Work

 Reinforcement learning. Not useful forReinforcement learning. Not useful for
complex domains.complex domains.

 Heuristic game learning. Promising results,Heuristic game learning. Promising results,
without domain knowledge.without domain knowledge.

 Reinforcement learning used to trainReinforcement learning used to train
neural networks for self play games.neural networks for self play games.

 Genetic algorithms have been used withGenetic algorithms have been used with
competitive coevolution.competitive coevolution.

 Etc.Etc.

PerformancePerformance

 For games with at most c perfect strategies andFor games with at most c perfect strategies and
specification number k, using randomizedspecification number k, using randomized
strategy learning algorithm, competitivestrategy learning algorithm, competitive
algorithm complexity is O(k) to learn perfectalgorithm complexity is O(k) to learn perfect
strategy.strategy.

 For games G, transitive chain of length l,For games G, transitive chain of length l,
competitive algorithm using strategy algorithmscompetitive algorithm using strategy algorithms
require O(l) time to find perfect strategy. (chainrequire O(l) time to find perfect strategy. (chain
is the sequence of h,x pairs)is the sequence of h,x pairs)

Two Simple CompetitiveTwo Simple Competitive
AlgorithmsAlgorithms

11.Each Defeats the Last.Each Defeats the Last: Algorithm obtains: Algorithm obtains
an initial first player strategy s, then find aan initial first player strategy s, then find a
second player strategy t with t>s, and sosecond player strategy t with t>s, and so
on.on.

This is essentially the competitive algorithmThis is essentially the competitive algorithm
used in Samuelused in Samuel’’s checkers learnings checkers learning
system.system.

Main problem is the keep choosingMain problem is the keep choosing
strategies in a cycle.strategies in a cycle.

Competitive AlgorithmsCompetitive Algorithms

2.Single Counterexamples2.Single Counterexamples: Given a: Given a
hypothesis, an equivalence query returnshypothesis, an equivalence query returns
““yesyes”” if the hypothesis is the target, and if the hypothesis is the target, and
provides a counter example if it is not.provides a counter example if it is not.

We can say that a counterexample is aWe can say that a counterexample is a
second player strategy to defeat firstsecond player strategy to defeat first
player strategy.player strategy.

Not sufficient to learn all games.Not sufficient to learn all games.

The Covering CompetitiveThe Covering Competitive
AlgorithmAlgorithm

 Covering all First and Second PlayerCovering all First and Second Player
OpponentsOpponents: The first player strategy: The first player strategy
learning algorithm, at every step, finds alearning algorithm, at every step, finds a
strategy that defeats all second-playerstrategy that defeats all second-player
strategies already seen.strategies already seen.

 Using worst case strategy learningUsing worst case strategy learning
algorithmsalgorithms: This competitive algorithm: This competitive algorithm
performs as well as possible with worstperforms as well as possible with worst
case strategy learning algorithms.case strategy learning algorithms.

 Using a Randomized Strategy LearningUsing a Randomized Strategy Learning
AlgorithmAlgorithm: Define the (p,q) randomized: Define the (p,q) randomized
criterion for sampling from an arbitrarycriterion for sampling from an arbitrary
set Y.set Y.

At each step of algorithm, denote by X theAt each step of algorithm, denote by X the
set of remaining feasible sets of secondset of remaining feasible sets of second
player strategies.player strategies.

ExamplesExamples

 Generalized Guessing Games: Solve theGeneralized Guessing Games: Solve the
game in time polynomial n usinggame in time polynomial n using
randomized criteria.randomized criteria.

 Concept LearningConcept Learning

ComplexityComplexity

 Who wins? This problem solved byWho wins? This problem solved by
strategy learning algorithm in NP.strategy learning algorithm in NP.
Competitive algorithm using randomizedCompetitive algorithm using randomized
criterion in lg(H) or lg(X).criterion in lg(H) or lg(X).

 No competitive algorithm exists solvesNo competitive algorithm exists solves
every game in polynomial time.every game in polynomial time.

Future DirectionFuture Direction

 Games with polynomial time computableGames with polynomial time computable
outcomes are not solvable in timeoutcomes are not solvable in time
polynomial in lg(H) and lg(X). Openpolynomial in lg(H) and lg(X). Open
question is whether games may bequestion is whether games may be
solvable in time polynomial.solvable in time polynomial.

 The (p,q) randomization criterion is oneThe (p,q) randomization criterion is one
condition that allows the coveringcondition that allows the covering
competitive algorithm to learn perfectcompetitive algorithm to learn perfect
strategies in polynomial time.strategies in polynomial time.

Future DirectionFuture Direction

 For complex games, it is unlikely thatFor complex games, it is unlikely that
natural classes of quickly computablenatural classes of quickly computable
strategies will contain perfect strategies.strategies will contain perfect strategies.

 Even when perfect strategies exist, it mayEven when perfect strategies exist, it may
be intractable to find them.be intractable to find them.

ConclusionConclusion

 Competitive algorithm is able toCompetitive algorithm is able to
successfully bootstrap its way to perfectsuccessfully bootstrap its way to perfect
strategies for a game under generalstrategies for a game under general
conditions.conditions.

 Covering competitive algorithmCovering competitive algorithm
guarantees progress by ensuring that newguarantees progress by ensuring that new
strategies defeat all previous strategies.strategies defeat all previous strategies.

 Future work should be able to extendFuture work should be able to extend
results to approximate learning.results to approximate learning.

