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Abstract

In the typical genetic algorithm experiment, the
fithess function is constructed to be independent
of the contents of the population to provide a con-
sistent objective measure. Such objectivity entails
significant knowledge about the environment
which suggests either the problem has previously
been solved or other non-evolutionary techniques
may be more efficient. Furthermore, for many
complex tasks an independent fitness function is
either impractical or impossible to provide. In
this paper, we demonstrate thraimpetitive fit-
ness functionsi.e. fitness functions that are
dependent on the constituents of the population,
can provide a more robust training environment
than independent fitness functions. We describe
three differing methods for competitive fitness,
and discuss their respective advantages.

One manner of forcing the competition into a variety of
representative strategic situations is to introduce a nonde-
terministic element into the competition. For instance,
Tesauro (1992) describes a neural network that learns to
play backgammon at an expert level purely from self-com-
petition, i.e., the network plays against itself and updates
its weights at the end of each game. Such a reflexive envi-
ronment would usuallyjnaximizethe potential for the net-
work to fall into poor strategic minima if it weren't for the
natural non-determinism of the dice roll in the backgam-
mon task (Tesauro, 1992; Epstein, 1992). The roll of the
dice occasionally forces play into board configurations
that have never been visited in any previous game and
consequently provides feedback to refine the network. In
tasks where there is no natural source of non-determinism,
an artificial random element must be introduced.

In genetic algorithms, the population represents a natural
source of diversity that, while not entirely random, can be
recruited to create non-deterministic competitive environ-

ments. Competitive populations have been under-
exploited in genetic algorithms; exactly why is unclear.
One possibility is that competitive environments are
. . ) . . thought to be too unstructured to guide a population
Competitive learning is a long standing topic in machingqyard a particular goal unless the goal is suitably vague
Iearnlng _(Sa_muel, 1959; Tesauro, 1992). Interest for USINgr non-existent. Such an attitude could explain the relega-
competition in machine learning tasks stems from a desilijo, of competitive evolutionary environments to the Arti-
for a program to discover th_e strategic nuances of a COfficjal Life community (e.g., Ray, 1992; Lindgren, 1992).
plex task directly from the first principles of interaction. Another possibility is that competition is considered too
Appropriate complex structures arising purely from thégypensive for practical problems; that it requires too many
physics” of the task environment would be the ultimategy|yations of population members to determine an accu-
validation of machine learning capability. Such is theyate ranking. Without an accurate enough ranking, the nat-
essence of emergent computation (Forrest, 1991). ural dynamics of the evolutionary process might be

. . . compromised.
A competitive learning process encourages an evolutior

ary development such that as new strategies are develogln this paper, we enumerate the advantages of competitive
by one learner, its opponent adjusts its abilities and discoffitness functions and show them to be a powerful unex-
ers new strategies of its own. This strategic “arms raceplored resource in genetic algorithms. We describe three
ideally increases the overall ability of the learners untitypes of competitive fitness functions as examples. The
they reach near optimal abilities. Unfortunately, there is first is a full competition model used in Axelrod (1989) to
possibility of competitive learners falling into local min- evolve strategies for the Iterated Prisoner’s Dilemma. The
ima where important task configurations are undersecond is a bipartite competition in Hillis (1992) used to
explored, thereby leading to immature inductionsevolve sorting networks. The third we introduce in this
(Tesauro, 1992; Epstein, 1992). paper and demonstrate its ability to evolve more robust

1 INTRODUCTION
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genetic programs (Koza, 1992; Koza, 1992b) than star
dard non-competitive fithess functions. We conclude witf

a discussion of the various beneficial properties of compe o o
itive fitness functions. O———@
b o o
—e
2 COMPETITIVE FITNESS FUNCTIONS O— @
O——@
The standard fitness functions used in genetic algorithi O——@
are exemplified by the functions studied in DeJong (1975 Q) o O——e
Such functions return the same fitness for an individue oO——o
regardless of what other members are present in the pog
lation. Their independence from the population’s composi (a) (b)

tion allows these functions to provide an accurate an
consistent fithess measure throughout the evolutional
process.

—>0Q

While global accuracy is easily computed when evolving
solutions for many simple optimization problems, it is
often impractical for problems with higher complexity.
The difficulty stems directly from the objectivity of the fit- A

ness function, since objective accuracy often comes onl

at the cost of significant knowledge about the searc O

space. For instance, consider the expense of a standard ()

ness function for evolving an optimal strategy for a partic-

ular game. Such a function would need to test members

the population against all possible strategic situations t Figure 1: Three types of competitive fitness func-
garner an objectively accurate measure. For anything but  tions. (a) Full competition used in Axelrod (1989);
trivial game such a computation is immense. If a suitabli  (b) Bipartite competition used in Hillis (1992); and
“expert” strategy were available, an independent fitnes (C) Tournament fitness with each horizontal line
function could still be constructed, however, the evolvec designating a competition and each upward arrow
solutions would only be “optimal” with respect to this designating the winner progressing in the tourna-
“expert” rather than the original task. ment.

with this method appears in Figure 1a. Assuming the size
of the population i, the number of competitions exe-
cuted in a generation i¥. When the task to be solved is
quite complex and requires a large population or a signifi-
cant number of generations, this number of competitions
per generation may be prohibitive.

In contrast, @ompetitive fitness functios any calculation
for fitness that islependenbn the current population to
any degree. The dependency could be relatively minima
such as on a single population member, or fairly compre
hensive in functions that use the entire population to dete
mine a single strategy’s fitness. In essence, competitiv
fitness is the original intention behind a fitness functiorHillis (1992) demonstrates a dependent fitness function
since it provides a measure of an individual’s ability rela-with an interesting competitive approach. The problem
tive to the current population rather than relative to theexplored in Hillis (1992) is to evolve a sorting network for
global optimum. any arrangement of 16 integers with as few position
exchanges as possible. Notice that this task is not so differ-
Axelrod (1989) experiments with both an independent anent from a game. The sorting networks represent various
a competitive fitness function to evolve strategies for thstrategies and the 16! potential arrangements of integers
lterated Prisoner’s Dilemma. For the independent fitnesrepresent the various board configurations. Clearly, using a
function, a weighted sum of the scores against eight pr(fltness functlon WhICh' tests all .possmle.permutanons on
selected strategies was used, where the weights and repeach sorting network is impractical. Additionally, a static
sentative strategies were selected on the basis of knovysubset of permutations would clear_ly_ encourage solutions
edge gained from previous experiments (Axelrod, 1984)that sort only the chosen subset. Hillis (1992) reports that
In the competitive fitness function, Axelrod (1989) tests€Ven using a randomly selected subset of permutations that
every population member against every other populatio€Nanges every generation does not provide a sufficient
member, which presents an adaptive developmental en\&nvironment to evolve adequate sorting networks.
ronment for the population. However, there is no mentiorin order to maintain a consistently difficult set of permuta-
in the study about the relative abilities of the evolved strattions to evaluate the sorting networks, Hillis (1992) cre-
egies. A schematic of the competitive pairings associateates a second population for the experiment. Each member
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of the second population encodes a small set of permutwinners. The tournament continues until a single winner
tions to be sorted by one of the sorting networks of the firremains The fitness of a member of the population is its
population withboth populations evolving from genera- height in the playoff tree, the player at the top is then the
tion to generation. Fitness for the population of sortincbest player of the generation. The competitive parings for
networks is defined to be how well the member sorts thtournament fitness are illustrated in Figure 1c. The hierar-
various permutations within the associated member of thchical nature of the ranking is strictly enforced, ties being
second population. The fithess of a member in the secorbroken by random selection. In the case that the number of
population is a measure of hg@orly the sorting network competitors at a level is odd, a single population member
sorts the set of permutations it contains. This bipartitis passed to the next level of the tournament without a
competition is illustrated in Figure 1b. With this fithesscompetition, effectively receiving a “bye” for that round.
function the system evolved a sorting network with onlyThe total number of competitions for a population of size
61 position exchanges, which is a single exchange worn is:

than the best known sorting network for 16 numbers.

Assuming the sizes of the populations are the same ai Mog(n) 1
when combined equal the bipartite competition in Hillis z E =n-1 (EQ 1)
(1992) uses a total af/2 competitions each generation. i |2

This is far fewer than a full competition, as in Axelrod

(1989). However, while the fitness function used in Hilliswhich is one fewer comparison than required to play each
(1992) is an example of a competitive fitness functionmember of the population against a single “expert” strat-
there is no method for determining which member of theegy in a comparable independent fitness function.
population is the best sorter. Because each sorting netwa o ) )
competes against a single member of the second populQuantification of performance on the task is unimportant
tion there is no basis of comparisbetweensorting net- When using tournament fitness; all that is required is a con-
works. The score received by a sorting network is relativCept of “better” to compare two strategies. This removes
to the difficulty of permutations it attempted and each sortall need for determining exactly how much better one
ing network sees distinct sets of permutations. In additiorPlayer is than another - the resulting tournament hierarchy
the bipartite nature of the competition model used in HilligiS Sufficient information for reproduction. Unless the com-

(1992) may be unnatural for some problems. petition, i.e., the measure of “better”, is noisy, an optimal
player will always win the tournament. However, if the

Pitting evolving members of a population against eaclenvironment is suitably complex and an optimal strategy is
other to determine fitness creates an interesting tension not in the population, it is possible for an average or even a
the genetic algorithm. For instance, while the populatiolcomparatively poor strategy to win the tournament for a

of sorting networks in Hillis (1992) is adapting to the spe-particular generation. Thus this competitive fitness func-

cific permutations it is being tested against, the populatiotion can contain a level of noise associated with its ability

of permutations is searching for the set that forces the sokto rank any given population. How accurately the tourna-

ing networks to perform as badly as possible. In order foment ranks the population is dependent upon the set of
the sorting networks to reproduce from generation to gercompetitors met. For instance, if the best player in the

eration consistently, they must generalize their sortingopulation competes in the initial round of the tournament

ability rather than encode for a specific subset of permutayith the second best member, only the best player will

tions. The need to compensate for the continuing diversitmove up the hierarchy with the second best player being
in the permutations inspires generalization in the sortingssigned the minimal fitness.

networks. A similar dynamic occurs in the competitive

single population of Axelrod (1989). In the following sec- Fortunately, the inherent noise of tournament fitness func-
tion, we describe a third type of competitive fitness functions is not a serious problem given that the fitness ranking
tion that uses a single homogenous population with feweiS being created to decide the proportions for reproduction.
competitions than full competition and still permits a besiConsider that the worth of a single competition, in terms

member to be identified. of reproduction, is inversely proportional to how high in
the tournament the competition occurs. In other words, the
3 TOURNAMENT FITNESS higher the level of the competition, the less it is worth in

terms of reproductive advantage. For example, consider a
Rather than exhaustively testing each member against tisingle competition in the initial round of the tournament.
rest of the population, itournament fitnesa single elimi-  The first competition determines which half of the rank-
nation, binary tournament is run to determine a relative fitings the two competitors will reside. The loser will have a
ness ranking. Initially, the entire population is in thefitness that will place it in the lowest 50% of the popula-
tournament. Two members are selected at random to cortion’s ranking. The winner will at least be in the upper
pete against each other with only the winner of the compe50% giving it a reasonable chance for reproducing. With
tition progressing to the next level of the tournamenteach successive round of competitions, exponentially
Once all the first level competitions are completed, th«decreasing subsets of the population are divided into win-
winners are randomly paired to determine the next leveners and losers until the last competition decides between
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best and second best for the generation. At this level, tt
difference in the probability of reproducing is negligeable
with any reasonably sized population.

Once a tournament has been run, any standard selecti
method can be used to designate parents for the next ge
eration. Because all the population members that lost i
the same level of the tournament will have the same fitne:
values, tournament fitness naturally de-emphasizes the
worth relative to each other. This is more beneficial tha
over-committing to an erroneous complete ordering of thi
population. Selecting between members with the same fi
ness must be at random which promotes better mixing ¢
the alleles and discourages premature convergence.
fact, in many situations tournament fitness will naturally
discourage convergence since as a particular strate
becomes too numerous it will be forced to literally com-
pete against copies of itself. This is akin to a predator/pre
system where the prey has been hunted to such low pog
lation levels that the predators are forced to feed on eac
other.

Tournament fitness sets up the same oppositional tensit
as in Hillis (1992), but in a more comprehensive manne
and requires only a single population. Because it i
unlikely that all strategies have been represented in pa
populations, complex developing strategies may conta

Angeline and Pollack
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not not newfunc

not or

/ /N

and not d2

compression / \
— dz2

dl not dO

do

d2

dl not do

(defunnewfunc (p1 p2 p3
do (or (not (andol p3)
(or (notp3) d2)))

Figure 2: Compression of tree representation used
in GLiB. The subtree is removed from the individ-
ual and replaced by a new function call defined with
the removed subtree. The expansion of a com-
pressed function reverses the process by replacing
the compressed function name with the original
subtree.

tion operator calledompressionas shown in Figure 2.
The result of evolution in GLiB is a modular program to
jperform the task. For additional information on GLiB, see

flaws that may be exploited by a variety of simpler play-Angeline and Pollack (1993).

ers. This is much like a relatively good chess player bein

beaten by a novice who only knows the “fool’'s mate” 1 e subject of our experiments is the game of Tic Tac Toe
strategy. Since for any complex strategy there may p(TTT) also called Noughts and Crosses. Figure 3 outlines
numerous ways for it to be beaten, a complex ecology ¢he primitive Iangu_ag_e_ we use for evolving modular TTT
strategies for the task can develop during the course of tiPrograms. The primitivepos00to pos22 are the data
run with only the most robust strategies consistenthPoints representing the nine positions on the TTT board.
appearing at the top of the tournament. These Comp|€F0r the I’emalnlng pr|m|t|VeS, the return Value IS elthel’ one
strategic ecologies are similar to those described in RzOf these positions aMIL. The binary operatorand andor

(1992) and Lindgren (1992) but are relative to the specifieach take two arguments. When both arguments are non-
task being solved. NIL, and returns the second. If either argumentlis then

4 EXPERIMENTS

To test the tournament fitness function, we ran sever:
experiments using our Genetic Library Builder (GLiB)
(Angeline and Pollack, 1993; Angeline and Pollack, 1992
modified to perform a hierarchical tournament as
described in the previous section. GLIiB is based on Koza'
genetic programming paradigm (GPP) (Koza, 1992; Koze
1992b) which uses a primitive programming language
arranged in expression trees for the representation of po
ulation members. The primitive language relies on a sim
ple and uniform syntax to remove the possibility of
generating a non-viable expression trees during recomkb
nation. Crossover in GPP simply swaps randomly selecte
subtrees between the expression trees. Koza has dem
strated the ability of GPP to evolve solutions for a signifi-
cant number of engineering problems (Koza, 1992). Ou
system, GLIB, is an extension to GPP that induces ne
language elements by non-deterministically creating suk
routines that are protected from further alteration by
recombination. New subroutines are formed with a muta

pos00 posO1 pos02
pos10 posll | posl2
pos20 pos21l | pos22

pos00 .. pos22board positions

and - binary LISP “and”

or - binary LISP “or”

if - if <test> then <argl> else <arg2>
open- returns <arg> If unplayed else NIL
mine - returns <arg> if player’s else NIL
yours - returns <arg> if opponent’s else NIL
play-at- places player's mark at <arg>

Figure 3: Primitives used to evolve modular pro-
grams to play Tic Tac Toe.

The Ohio State University
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it returnsNIL. Or returns the first noNHL argument and win on its next turn. Unless forked, NEAR will either
returnsNIL otherwise. Thé primitive is the standard con- draw or beat its opponent. Both NEAR and BEST non-
ditional statement. It returns the value returned by its sedeterministically choose between equal moves in order to
ond argument when the <test> is - otherwise it  force more robust play from the developing programs.
returns the value returned by the third argument.plég

at primitive takes a single argument. If the argument is ¢
position and no player has placed a mark there, then tt
current player’s mark is placed at that position and the tur
is halted. Otherwiseplay-at will return whatever it is
passed. Finally, the operatomgne, yoursandopentake a
position and return it when the mark in that position fits
the test. Otherwise, they too retunth. .

Our experiments cover four different learning situations.
For the first three, we use an independent fithess function
consisting of one of the above experts. A single competi-
tion against an expert is scored by the number of moves
the evolved program makes with a 5 point bonus for a
draw and a 20 point bonus for a win. A program’s average
score over four games is its fithess. These runs represent a
range of independent fitness functions that might be used
The language outlined above is general enough to covifor this task. In fact, NEAR is very similar to the expert we
any number of two player games on a nine position boarwused in earlier experiments with GLiB to induce a modular
Consequently, there is no guarantee that a random prgenetic program that could fork (Angeline and Pollack,
gram in this language will observe the rules of TTT 0r1993).

even place a single mark on a TTT board. If the prograr
does not make a valid move during a game, then its turn
forfeited, providing a significant advantage for its oppo-
nent. We consider legal moves to be a part of the enviror
ment’s complexity and consequently should be induced b
our learning method.

The final experiment uses the tournament fitness function
as described in the previous section and is labeled POP in
the results. Scoring a single competition between two pro-
grams was as described above. A program was deemed
“better” than its opponent if it had the greater score after
two games, with each player taking the first move in one
Obviously, the choice of primitive language in GLiB andgame. As described in the last section, if the scores were
GPP dictates how difficult a given concept is to learn. Thequal the winner of the competition was chosen at random.
primitive language for TTT above is more general thar
necessary to solve the task for two reasons. First, the tyg
cal approach in machine learning is to separate the lear
ing of the control task from the learning of the evaluatior

Each of the experiments used a population size of 256 and
ran for a total of 150 generations. All experiments used
roulette wheel selection with linear scaling (Goldberg,
task, often with the control task being assumed (eg1989) and a scaled fitness maximum of two. Other than the
’ “method of training, all other factors were equal. The

Tesauro, 1992; Berliner, 1977). We feel that such a separ o o oter settings used were as listed in Angeline and Pol-
tion inhibits the complete learning process. Our Iearnerlack (1993)

must acquire both control and evaluation abilities within

the same structure at the same time. Consequently, we In order to observe the training ability of each of the vari-
not expect our programs to induce the complete concepus fitness functions, the evolved program with the best
but only portions. Which portions of the complete taskfitness from each experiment played a total of 2000 games
they do acquire and how the task is generalized often illlagainst each of the three experts to evaluate its abilities.
minates much more about the learning process than corResults for the four experiments are shown in Table 1. As
plete acquisition. Second, we wish to study the acquisitiocan be seen from the table, none of the evolved modular
of higher-level features associated with the tasks ratheprograms induced the optimal TTT program. This is due in
than provide them a priori as in most learning systempart to our low level primitive language and our insistence
(e.g., Samuel, 1966; Rumelhart et. al., 1986; Tesaurthat GLiB acquire both control and evaluation in the same
1990). This goal requires a representation in which thesprogram. More interesting is the difference in ability of the
features can be discovered by the learner during the learprograms induced using the three expert algorithms. The
ing process, such as the language described above. program evolved using RAND is fairly poor, only able to

. beat the RAND expert a little more than half the time
To compare the ability of the programs evolved by stan, e appearing totally incompetent against the better

dard |ndte%endeﬂt fltt_nessff“unctlog,sT@ran tlournam?nt fitnesey nerts. NEAR's evolved protege embodies a more able
We created a coflection of “exper players otvarying ooncept that displays a broader ability to compete. The

strategic ability. The three experts used in this experimer ; ; ;

X program acquired using BEST appears to have induced the
Yé‘;;ﬁ Eé’l\tlgn I;Fgﬁ dacLJnrg E’)E dSe-tr'erTn'?rll\leDi tzlmgl\zlecfgcr)gsgi/ :Iability to draw opponents in many situations but is weak in
board configuration. At the other extreme is BEST WhicrItS ability to win, even against RAND.
chooses the optimal position to play on each move. NOf even more interest is the final experiment which used
strategy, evolved or otherwise, can win a game againtournament fitness. The program induced in this experi-
BEST. NEAR, the third algorithm, performs near opti- ment is clearly a more robust player if not more proficient
mally except that it can be forked by its opponent. A forkthan any of those induced using one of the experts. The
is any TTT board configuration where a player has morfact that the program evolved by tournament fithess was
than one winning move, guaranteeing an opportunity tthe only evolved program that could draw BEST, and did
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Table 1: Performance of best evolved program from each experiment against the various “experts.”

Fitness Evolved Program vs. RAND Evolved Program vs. NEAR Program vs. BEST
Function
Used Wins Draws Losses Wins Draws Lossgs Draws Losses
RAND 1125 0 875 0 0 2000 0 2000
NEAR 802 104 1094 144 123 1733 0 2000
BEST 310 535 1155 0 360 1640 0 2000
POP 781 471 748 61 588 1351 481 1519

so fairly frequently, shows it acquired a more sophisticatethe population. In the experiment above, NEAR and BEST
algorithm for TTT than those induced by the independenpresent difficult adversaries from the beginning and do
fitness functions. nothing to identify preferred performance in the early pop-

. . _ ) ) ulations. Such a large difference between the ability of the
An important question raised by these experiments is Whinitia| population and the strategy in the independent fit-

none of the programs evolved using the independent finass function can inhibit the evolution of solutions if not
ness functions could draw BEST. This is straightforward ilcompensated for in the function explicitly. For instance, in
the quality of environment presented by each fitness fun‘previous experiments with NEAR, we awarded a fitness

tion is considered in turn. First, RAND provides no pres+,nys for evolved programs that successfully blocked a
sure for a program to induce a complex winning strategyin (Angeline and Pollack, 1993). With a competitive fit-

Simply hard coding only three positions in a row will ness function, this problem is removed since the popula-
guarantee the program will win a few games againsion js jts own measure. As the ability of the individual

RAND. But such a strategy is easily thwarted by NEARmembers of the population increases on the task, the diffi-
and BEST. When using BEST as the strategy in the indéyjty of the fitness function evolves with them. Since the
pendent fitness function, no program ever receives posynction is dependent on the population, it tracks through
tive feedback for making three in a row, and consequentlze population’s non-linear development without the need
none of the evolved programs induce this ability very,r measuring the average member’s ability explicitly.

broadly. Programs perform well against BEST when theiaqgitionally, the open-endedness of a competitive fitness

can play almost anywhere on the board and maximize tfnction is dependent on the open-endedness of the repre
number of moves they make before being beaten. Thiganiation for the population members.
b

translates into a program that plays several moves

can’t put those moves together to form a winning combiAs we stated above, ecologies of strategies develop in
nation. When NEAR is used to evolve solutions, the procompetitive fitness functions that provide a more consis-
grams emphasize setting up forks, since this is NEAR’tently difficult environment than independent fitness func-

only flaw and the scoring function emphasizes winstions. As evolution continues, the ecological balance will

strongly. Once a program evolved using NEAR is able teshift in the population to take advantage of exploitable

fork it and win, there is no reason to improve and littlestrategic niches. The question still remains as to what pre-
pressure to develop the ability to consistently draw awvents the population from wandering aimlessly through

opponent. This type of strategy is sufficient to performthe space of strategies rather than moving towards more
well against RAND, but is easily defeated by BEST whichcomplex solutions. Given that the population maintains

protects itself from being forked. some level of diversity, this is straightforward. Because

there are many differing strategies that could be met in any
generation, only solutions that can perform well against a
number of them will consistently be in the upper tiers of

. ; , L the tournament and be able to continually reproduce. The
population. Some of these strategies will be simplistic ANconstantly changing competitive environment forces the

provide little difficulty while others will be equally com- ey el0ping programs to generalize their abilities, as in Hil-
petent on the task. We explore this and other advantagesig (1992).

competitive fitness functions in the next section.

On the other hand, the program evolved by tournament fi
ness is forced to play against a number of differing strate
gies from the collection of strategies developing in the

One advantage for tournament fitness over the bipartite
5 DISCUSSION competition used in Hillis (1992) is that proper counterex-

amples of various strategic difficulty are evolved within a
One of the primary advantages of competitive fithess funcsingle population removing the need for distinct popula-
tions is their ability to adapt to the level of complexity oftions to be maintained and separate fithess functions to be

The Ohio State University May 5, 1993 6
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constructed. The adaptability of the content of the singlEpstein, S., (1992), “Learning expertise from the opposi-
population may be more beneficial to the evolutionantion: the role of the trainer in a competitive environment.”,
development of solutions than a predetermined bipartitThe Proceedings of Al 9236-243.

population. Of course, which form of competition is

appropriate for a given task will be somewhat problenforrest, S., (1991), “Emergent computation: self-organiz-

dependent. ing, collective, and cooperative phenomena in natural and
artificial computing networks”, lEmergent Computation
6 CONCLUSIONS S. Forrest editor, Cambridge, MA: MIT Press.

In this paper, we argue that competitive fitness functionGoldberg, D., (1989)Genetic Algorithms in Search, Opti-
have many advantages over the independent functions tfmization, and Machine Learnin&eading, MA: Addison-
are typically used in genetic algorithms. Not the least oWesley Publishing Company, Inc.

these advantages is that a competitive fithess functic . . . L .
requires only a minimal understanding of the search spadillis, D., (1992), “Co-evolving parasites improves simu-
for a complex task. This removes the need for task know!at€d evolution as an optimization procedure’Attificial
edge that may be extremely difficult to engineer out of thd-ife Il, edited by C. Langton, C. Taylor, J. Farmer and S.
problem. Furthermore, by employing all strategies repreR@smussen. Reading, MA: Addison-Wesley Publishing

sented in the population as potential counterexamples, tcompany, Inc.

fitness function automatically adapts to the nuances ¢ S .
Lo . . Holland, J., (1975)Adaptation in Natural and Artificial
both the individual problem and the specific progression OSyste Ann Arbor, Mi: The University of Michigan

populations in a particular run. Finally, the experimentspress
above and those in Hillis (1992) demonstrate that using th :

population as the reservoir for comparison is preferable tic -5 (1992)Genetic ProgrammingCambridge, MA:
using an exemplar for the task when an objective measuy; 1 press T
of fitness is unavailable. Using a competitive environmen '

permits the evolutionary process to acquire a more generkoza, J., (1992b), “Genetic Evolution and Co-Evolution

solution that approximates global optimality relative to theof Computer Programs.” IArtificial Life I, edited by C.

task rather than relative to the provided exemplar. Langton, C. Taylor, J. Farmer and S. Rasmussen. Reading,
MA: Addison-Wesley Publishing Company, Inc.
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