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Abstract, Neural networks are parallel processing
structures that provide the capability to perform vari-
ous pattern recognition tasks. A nctwork is typically
trained over a set of exemplars by adjusting the weights
of the interconnections using a back propagation al-
gorithm. This gradient search converges to locally opti-
mal solutions which may be far removed from the
global optimum. In this paper, evolutionary program-
ming is analvzed as a technique for training a general
neural network. This approach can yield faster. more
efficient yet robust training procedures that accommo-
date arbitrary interconnections and neurons possessing
additional processing capabilities.

I Imtroduction

Meural networks are parallel processing structures con-
sisting of nonlinear processing clements interconnected
by fixed or variable weights. These topologies can be
constructed to gencrate arbitrarily complex decision
regions for stimulus-response pairs, hence they are well
suited for use as detectors and classifiers. Classic pattern
recognition algorithms {eg. detection, classification,
target recognition) require assumptions concerning the
underlying statistics of the environment. Neural net-
works are nonparametric and can effectively address a
broad class of problems (Lippman 1987). Further, neu-
ral networks have an intrinsic fault tolerance. Some
“neurons' may fail and vet the overall network can still
perform well because information is distributed across
all of the elements of the networks (Rumelhart and
McClelland 1986). This is not possible in strictly Von
Neumann architectures.

Neural network pradigms can be divided into two
categories: supervised learning and unsupervised learn-
ing. In supervised learning, input data is associated with
some output criierion in a4 one-to-one mapping, with
this mapping known a priori. This mapping is then
learned by the network in a training phase. Future
inputs which are similar to those in the training sample
will be classified appropriately. Unsupervised learning

uses the network as a self-organizing classifier. Decision
regions are formed with respect to the similarity of
input exemplars. No a priori clustering is given. The
network adapts its outputs to minimize a function of
the spacing between elements in each developed cluster.
In this paper, supervised learning will be considered.

Multiple layer perceptrons, also known as feedfor-
ward networks, are typically used in supervised learning
applications. Each computation node sums N weighted
inputs, subtracts a threshold value and passes the result
through a logistic function. An appropriate choice of
logistic function provides a basis for global stability of
these architectures. Single layer perceptrons (i.e., feed-
forward networks consisting of a single input layer)
form decision regions separated by a hyperplane. If the
input from the given different data classes are linearly
scparable, a hyperplane can be positioned between the
classes by adjusting the weights and bias terms, If the
inputs are not lincarly separable, containing overlap-
ping distributions, a least mean square (LMS) solution
is typically generated to minimize the mean sguared
error between the caleulated output of the network and
the actual desired output. Two layer perceptroms (i.e.,
networks with a hidden layer of processing elements)
can form unbounded arbitrary convex polytopes in the
hyperspace spanned by the inputs. These regions are
generated by the intersections of multiple hyperplanes
and have at most as many sides as there are nodes in
the hidden layer. Three layer perceptrons can form
arbitrarily complex decision regions. No more than
three layers of elements in perceptron networks are
necessary o solve arbitrary classification mapping
problems (Kolmogorov 1957).

Both continuous valued inputs and continuous val-
ued outputs may be implemented, allowing for a wide
range of input types and output categories. The input
layer consists of a vector containing the input feature
values to be studied. These may consist of stale-space
components, frequency components, pixel values, trans-
form coefficients, or any other features considered
important and representative of input exemplar data
contents to be learned,
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Given a network architecture, a training set of inpui
patterns, and the associated target outputs, every set of
weights and bias terms defines the output of the net-
work to each presented pattern. The error between the
actual output of the network and the target value
defines a response surface over an n-dimensional hyper-
space, where there are n weights and bias terms to be
adapted. Training of a multi-layered network can be
achieved through a back propagation algorithm {Wer-
bos 1974; Parker 1985) which implements a gradient
scarch over the error response surface for the set of
weights which minimizes the sum of the squared error
between the actual and target outputs.

This surface may contain many local minima that
may be far removed from the global optimum solution.
A gradient technique may lead to entrapment in these
suboptimal solutions so that the network inaccurately
classifies input patterns. One strategy to avoid this
problem is simply to restart the optimization with a
new random set of weights, in the hope that a different
optimum will be found. OFf course, there is no guarantee
that such a minimal energy well will not also be a local
solution. Another technique is to perturb the weights
whenever the algorithm seems to be in a local minimum
point and then continue training, but this does not
guarantee that the same local solution will not be
rediscovered { Rumelhart and MeClelland 1986). Fur-
ther, should the response surface be pocked with many
local optima, the constant modification of the weights
may make the gradient search technique ineffective at
finding even “pood™ locally optimal selutions. Simu-
lated annealing (Szu 1986) has been used with some
success at overcoming local optima, but the required
execution time makes this an unsatisfactory approach
to many problems.

The search for an appropriate set of weights and
bias terms is a complex, combinatorial optimization
problem. No single parameter can be optimized without
regard to all other parameters. Evolutionary program-
ming has been used to address difficult combinatorial
oplimization problems such as the traveling salesman
problem (Fogel 1988), In this paper, a review of evolu-
tionary programming is offered. The cfficiency of the
technique for training feedforward networks is exam-
ined in two experiments. A comparison is made to back
propagation. Finally, some theoretical and computa-
tional issues are addressed.

2 Evolutionary Programming

The original evolutionary programming concept { Fogel
1962, 1964; Fogel et al 1966) focused on the problem of
predicting any stationary or nonstationary time series
with respect to an arbitrary payoff function, modeling
an unknown transducer on the basis of input-
output data, and optimally controlling an unknown
plant with rtespect to an arbitrary payoff function.
Matural evolution optimizes behavior through iterative
mutation and selection within a class of organisms.
Behavior can be described in terms of the stimulus-

response pairs that depend on the state of the organism.
Each organism can be portrayed as a finite state ma-
chine (i.e., a Mealy machine), a mathematical function
that does not constrain the represented transduction to
be linear, passive, or without hysteresis.

The evolutionary process is simulated in the fol-
lowing manner: an original population of “machines”
{arbitrarily chosen or given as “hints™) are measured
in their individual ability to predict each next event in
their “experience” with respect to whatever payoff
function has been prescribed (e.g. squared error, lincar
error, all-none, or another reasonable choice). Progeny
are now created through random mutation of these
“parent” machines. These offspring are scored on their
predictive ability in a similar manner to their parents,
Those organisms which are most suitable for achieving
the task at hand are probabilistically selected to be-
come the new parents. An actual prediction is made
when the predictive-fit score demonstrates that a suffi-
cient level of credibility has been achieved. The surviv-
ing machines generate a prediction, indicate the logic
of this prediction, and become the progenitors for the
next sequence of progeny, this is in preparation for the
next prediction. Thus, aspects of randomness are selec-
tively incorporated into the surviving logics. The se-
quence of predictor machines demonstrate phyletic
learning.

Wright {1932) introduced the concept of an “adap-
tive landscape™ or “adaptive topography” which de-
scribes the fitness of organisms. This concept has come
to be a central facet of evolutionary biology. Individual
genotypes are mapped to respective phenotypes which
are in turn mapped onto the adaptive topography. Each
peak in the topography corresponds to an optimized
phenotype, and thus an optimized genetic structure.
The adaptive topopgraphy is not stationary and under-
goes time varying transformations corresponding to
environmental variation and changes. Eveolution pro-
ceeds up the slopes of the topography towards the
peaks as natural selection acts in concert with reproduc-
tion, mutation, and competition,

When applying evolutionary programming to the
training of neural networks, the corresponding adaptive
topography is inverted, with evolution proceeding to-
ward valleys as error is minimized. Rather than per-
form mutation and selection on finite state machines,
the actual weight and bias terms of a network can be
varied directly. A population of vectors whose compo-
nents are the weight and bias terms of the network is
maintained at each peneration. Each vector has a corre-
sponding error score. Those vectors with the smallest
error are probabilistically selected to become parents of
the next generation. Mutation is accomplished by
adding a Gaussian random variable with zero mean to
each component of a parent vector. The variance is
made proportional to the error of the parent to simu-
late the effect of genetic buffering that occurs in natural
evolution. As this selective random walk iterates, ap-
propriate sets of weights and bias terms are evolved.

To give an example of how evolutionary program-
ming moves the parent vectors over a response surface,
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Fig. 1. Fix, 1) =x%+ 2v? — 0.3 cos{Inx) = 0d cos(dnmp) +0.7. x. v E

Fig. 2. Fix, }) = x* + 29 — 0.3 cos(3nx) — 04 cos(4mp) +0.7. x, v e
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Fig. 3. a Distribution of parent vectors at generation # 1. b Distribution of parent vectors al generation # 5, ¢ Distribution of parent veclors al

generation 4 10, d Distribution of parent vectors at generation 4 20.



4940

consider the problem of minimizing the two dimen-
sional objective function

Flx, ¥) = x2 + 207 — 0.3 cos{ 3nx) — 0.4 cos(dny) + 0.7,

taken from Bohachevsky et al. {1986). The global mini-
mum iz (0,0). Figure 1 shows Fix, ») with x and y
ranging from —350 to 50. The quadratic elements of
F(x, y) dominate the trigonometric functions. Figure 2
shows F(x, y) with x and y ranging from —1 to 1. Here,
the cosine functions dominate the guadratic elements
and lead to multiple local optima. This behavior is
typical of many sguared nonlinear functions. When the
estimated parameters are far from optimum, the
squared error dominates; when the estimates are closer
to the optimum, the nonlinearities generate a pocked
surface.

Evolutionary programming was implemented to
minimize Fix, ¥). A set of 50 parent veclors were main-
tained at each generation. Offspring were generated by
adding a Gaussian random variable with mean zero
and variance equal to the objective value of the parent.
Probabilistic survival was handled by forcing each vec-
tor to face 10 other vectors in competition for a “win.”
The probability of obtaining a win was set equal to the
opponent’s error score divided by the sum of both error
scores. For example, if a vector with error = 1.0 faced
another vector with error = 2.0, the probability of the
first vector obtaining a win would be 2/(1+ 2) = 2/3.
This weighting is justified by wviewing each wvector's
fitness as a mean time to obtain a given resource, with
the distribution of the time being exponential. The
praobability of a win then becomes the probability that
the vector with the lower error will obtain the resource
before its competitor. The 30 vectors with the most
wins are selected to be parents for the next generations.
Figures 3a through 3d indicates the distribution of the
parents over successive generations. There is a rapid
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convergence to the global optimum despite the exis-
tence of many local optima. Figure 4 indicates the
evolutionary oplimization over successive generations,

3 Experiments with Evolutionary Networks

The XOR Problem

The problem of discovering a set of suitable weights for
correctly classifying the XOR problem (ie., map
(0,00 =0.1, (1,00 =09, {0, 1) —=0.9, (1,1} = (0.1)) was
considered. A multiple layer perceptron having two
input nodes, a single hidden layer of two nodes, and a
final output node was used. There were nine weighted
connections, including the bias terms. A population of
50 parent vectors were initialized randomly, having
components valued between —0.5 and +0.5. Offspring
vectors were generated by randomly altering each com-
ponent of the parent’s vector by a normally distributed
random value with mean zero and decreasing variance
over time. All vectors were scored with respect to the
sum of the squared error between the target output (0.9
or 0.1) and the actual network output determined by the
nine vector weights. The best 50 vectors were retained to
serve as parents for the next generation in accordance
with the probabilistic formulation described above. Fig-
ure 5 indicates the rapid evolutionary optimization of
this process. Evolutionary programming “solved” this
problem before the 40th generation (2000 offspring). A
typical back propagation algorithm requires about 240
generations (epochs) to “solve”™ this problem,

A Gasoline Blending Problem

Another experiment concerned a gasoline blending
problem adapted from Snee (1981) and Berliner (1987).
It was required that a three-layer perceptron correctly
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Fig. 5. Evolutionary optimization of network for the XOR prob-
lem



Table 1. Gasoline blending data
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X1 X2 X3 X4 X5 b Target
RLE] 0.000 350 (6K 0.060 1040 1]
(0K 0,300 0100 000 116D 1010 0
(1.(HK) 00,300 0000 014y (600 00 0
0150 0150 0100 0.600 {104 97.3 0.1
0.150 (1.0 0.150 0.6 0106 97.8 0.1
(00D (0. 300 0049 0,600 0.051 a7 0.1
{r.00H) 3,300 RV 0,484 0.211 970 0.1
{1,150 0.127 0023 0. 6M} 01040 973 0.1
0150 (0, CHR) 0.311 0.5349 0,000 ga.7 0.1
(100 (0,300 0,285 0.415 (.00 098 0.1
00K (n.0%0 0,350 0,570 (L0000 1.0 0.9
0,150 0150 00,266 0434 (1.0HM) 99,5 ol
0,150 0150 (082 D018 (.60 101.9 04
RLVT 0.158 142 0 10 .60 100.7 0.9
(.0KM) 0,000 {hHH) 461 0.239 1.9 09
0150 0,034 1la (L 10K 0.600 101.2 0.9
0.068 0.121 0175 (444 0192 98.7 01
0.067 .08 0.234 332 (1270 1005 9
0,000 (.30 0192 .208 (1.3} 10006 R
0,150 0150 0174 0.226 03Ky 1ML 0.9
075 0225 0276 0.424 (W %41 0.1
0ois 0.225 0.0 0,104 0.500 004 L9
LREUH 0.126 0.174 LRCVI 0100 984 {11
0.075 (TRELY] 0,225 .60 0. 1040 082 0.1
0,150 {r.150 0,000 0.324 0.376 0.4 .1
LRLLH 0300 0192 0.508 R 98,6 0.1
X1 = Butane

X2 = lsopenetane

X3 = Reformate

N4 = Cut Cracked

N3 = Alkylate

Y = Research Octane at 2.0 Grams of Lead/Gallon

identify whether or not the octane rating of a blend of
five chemicals would be greater than or equal to 100.
Table | indicates the data, which was adapted from
Berliner (1987). The network architecture for this prob-
lem possessed five nodes in the input layer, two nodes
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Fig. 6. Evolutionary optimization of network for the gasoline blend-
ing problem
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in the first hidden layer, five nodes in the second hidden
layer, and a final output node. The target output for the
network was 0.9 if the octane was greater than or equal
to 100, and 0.1 otherwise, Figure 6 indicates the evolu-
tionary optimization of the 33-component weight vee-
tors. The fully trained network made no errors in
classification. An appropriate set of weights was discov-
ered in fewer than 100 generations. Using standard
training rates and momentum terms, a typical back
propagation algorithm requires between 400 to 500
gencrations (epochs) to “solve” this problem,

4 Conclusions

The typical back propagation algorithm is limited to
multiple layer perceptrons. Other search techniques can
be constructed for various network topologies, but
specific considerations must be addressed in each case,
In contrast, evolutionary programming can be imple-
mented to optimize the weighted interconnections of
any generalized network. Feedback loops and feedfor-
ward loops can extend over more than one layer with-
out computational difficulty. Fach node can be given
additional processing capability, There is no need to
give concern Lo the physical realization of the network.
Only the desired and actual outputs are compared with
the weights being mutated randomly in accordance
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with a Gaussian distribution with zero mean and vari-
ance proportional to the network's error. The class of
neiworks that can be examined uvsing evolutionary
programming becomes much more general.

The response (energy) surfaces generated in real
world neural network pattern classification problems
are typically pocked with multiple optima. While a
gradient technique such as back propagation is guar-
anteed to find locally optimal solutions if the step size
tends to zero, these local solutions often fail to provide
satisfactory performance on the given training set. In
these cases, the entire search is restarted from a differ-
ent random point or additional nodes are added to the
network until the training algorithm discovers a suit-
able solution. But the resulting network may be
severely overdefined. Any training data can be cor-
rectly classified if the network is piven sufficient de-
grees of freedom. Such a network is unlikely to
perform well on new data taken independently from
the training data.

Evolutionary programming offers a parallel search
which can overcome local optima. The Gaussian rela-
tionship between each parent and offspring guarantees
that every combination of weights and biases can be
generated. Each contending solution is probabilistically
selected to become a parent in the next peneration.
Simulated evolution can therefore discover globally
optimal sets of weights. Whereas back propagation can
lead to overdetermined networks, evolutionary pro-
gramming can effectively train smaller networks which
may be more robust,

This versatility has some computational cost, Table
2 indicates the number of multiplies and additions
required in one training iteration of a multiple layer
perceptron by back propagation and evolutionary pro-
grammming. On a serial computer, the evolutionary

technique requires significantly more computation and
execution time per iteration. Obwversely, the evolution-
ary technique generally discovers a suitable solution in
fewer iterations than back propagation. If a machine is
available which can fully parallelize both algorithms
then the difference in execution times becomes negligi-
ble. It should be noted that the evolutionary algorithm
requires sorting out the **best” half of the population
al each iteration. While this does not entail any multi-
plies or additions, it can take significant execution time
if the population is very large (say > 1000). For typical
population sizes, such as 50 parents, very little time is
spent in sorting on a serial machine, and even less
would be required on a parallel machine.

Evolutionary programming can be viewed as a par-
allel implementation of simulated annealing, although
it is less greedy. In generalized simulated anmealing
{ Bohachevsky et al. 1986; Szu 1986) steps which lead
to improved sclutions are always accepted. Steps
which lead to poorer performance are probabilistically
accepted with respect to an “annealing schedule.” Sim-
ulated annealing can overcome local optima but is
generally slower than evolutionary programming be-
cause it utilizes only a single point on the response
surface at each iteration. By maintaining a population
of candidate solutions, the response surface can be
searched more efficiently and effectively.

[t is important to note that payoff functions other
than the typical squared crror can easily be incorpo-
rated into the evolutionary algorithm. In practice,
equally correct classifications are rarely of equal
worth, Similarly, errors are not equally costly. Simu-
lating natural evolution provides a paradigm for dis-
covering an optimal set of interconmection weights
which determine the appropriate network behavior in
the context of a piven criterion.

Table 2. Computational complexity of back propagation (BPF) and cvolutionary programming
{EP). L =Mumber of layers excluding input layer, & =Mumber of nodes in ith layer,
Ny = Mumber of input nodes, £ = MNumber of parents in population, & = MNumber of competi-

lions per Parent

Bequired executicn time for one iteration on serial machine

Multiplies Additions

i €L i Fa
BP IS NN _ +3ITN+T NN, 3T NN_,+3
bl G2 Pl

ra L
E N+ E MM

i

f=2

v E I L L
EP P[E Y MN o+ E .-u',+3k-l F[E YONN_+ Y .*-'r+2k}
il =

de= N

Required execution time for one iteration on parallel machine

Multiplics Additions
L1 L—1

BP ¥ N, +2L+1 ¥ N +L+1
=0 =
L—1 L—1

EP TN +4 YN+
=0 =t




References

Berliner LM {1987) Bayesian control in mixture models, Technomet-
rics 2045544l

Bohachevsky 10, Johnson ME, Stein ML (1986) Generalized simu-
lated annealing for function optimization, Technometrics 28:209—
218

Fogel DB (1988) An evolutionary approach to the traveling salesman
problem. Biol Cybern 60:139- 144

Fogel L) {1962} Autonomous automata, Industr Res 4:14-19

Fogel LY (1964) On the organization of intellect, Ph.D. Disseriation,
LCLA

Fopel LT, Owens AL, Walsh M (1966) Artificial intelligence through
simulated evolution. Wiley, New York

Kolmogoroy AN (1957 On the representation of continuous
functions of many variables by superposition of continuous
functions of one function and addition. Dokl Akad MNavk VSSR
14:853 956

Lippmann BP (1987} An intredoction to computing with neural nets,
IEEE ASSF Mag (April):4-22 April

Parker DR (1985) Learning logic. Technical Report TR-47. MIT

4493

Center for Computational Economics and Statistics, Cambridge,
Mass

Rumelhart DE, McClelland JL (1986) Paralle]l distributed processing,
vol L MIT Press, Cambridge, Mass pp 423-443, 472486

Snee RD (1981) Developing blending models for gasoline and other
blends, Technometrics 23:119- 130

Sen H (1986) Non convex optimization. Froceedings of the Society of
Fhotooptical Instrumentation Engineers, 698, Real Time Signal
Processing TX, 5963

Werhos P {1974) Beyond regression: new looli for prediction
and analysis in the behavioral sciences, Ph.D. Dissertation,
Harvard

Wright 5 (1932) The roles of mutation, inhreeding, crossbreeding, and
selection in evolution, Proc, 6th Int. Cong. Genetics, Ithaca, NY
1:356-366

David B. Fogel
QORINCON Corporation
0363 Towne Centre Dr,
San Diepo, CA 082121
USA



