
1

EVOLUTION AND CO-EVOLUTION OF COMPUTER PROGRAMS TO
CONTROL INDEPENDENTLY-ACTING AGENTS

John R. Koza
Computer Science Department

Stanford University
Stanford, CA 94305 USA

 Koza@Sunburn.Stanford.Edu
 415-941-0336

ABSTRACT
This paper describes the recently developed "genetic
programming" paradigm which genetically breeds popu-
lations of computer programs to solve problems. In ge-
netic programming, the individuals in the population
are hierarchical computer programs of various sizes and
shapes. This paper also extends the genetic program-
ming paradigm to a "co-evolution" algorithm which op-
erates simultaneously on two populations of indepen-
dently-acting hierarchical computer programs of various
sizes and shapes.

1 . INTRODUCTION AND OVERVIEW

This paper describes the recently developed "genetic pro-
gramming" paradigm which genetically breeds populations
of computer programs to solve problems. In genetic pro-
gramming, the individuals in the population are hierarchical
compositions of functions and arguments of various sizes
and shapes. Each of these individual computer programs is
evaluated for its fitness in handling the problem environ-
ment and a simulated evolutionary process is driven by this
measure of fitness.

This paper also extends the genetic programming
paradigm to a "co-evolution" algorithm which operates si-
multaneously on two (or more) populations of indepen-
dently-acting hierarchical computer programs of various
sizes and shapes. In co-evolution, each population acts as
the environment for the other population. In particular, each
individual of the first population is evaluated for “relative
fitness” by testing it against each individual in the second
population, and, simultaneously, each individual in the sec-
ond population is evaluated for “relative fitness” by testing
it against each individual in the first population. Over a pe-
riod of many generations, individuals with high "absolute
fitness" tend to evolve as the two populations mutually
bootstrap each other to increasingly high levels of fitness.

In this paper, the genetic programming paradigm is il-
lustrated with three problems. The first problem involves
genetically breeding a population of computer programs to
allow an "artificial ant" to traverse an irregular trail. The
second problem involves genetically breeding a minimax
control strategy in a differential game with an independently-
acting pursuer and evader. The third problem illustrates the
"co-evolution" and involves genetically breeding an optimal
strategy for a player of a simple discrete two-person game
represented by a game tree in extensive form.

2 . BACKGROUND ON GENETIC
ALGORITHMS

Genetic algorithms are highly parallel mathematical algo-
rithms that transform populations of individual mathemati-
cal objects (typically fixed-length binary character strings)
into new populations using operations patterned after (1)
natural genetic operations such as sexual recombination
(crossover) and (2) fitness proportionate reproduction
(Darwinian survival of the fittest). Genetic algorithms begin
with an initial population of individuals (typically randomly
generated) and then iteratively (1) evaluate the individuals in
the population for fitness with respect to the problem envi-
ronment and (2) perform genetic operations on various indi-
viduals in the population to produce a new population. John
Holland of the University of Michigan presented the pioneer-
ing formulation of genetic algorithms for fixed-length char-
acter strings in Adaptation in Natural and Artificial Systems
(Holland 1975). Holland established, among other things,
that the genetic algorithm is a mathematically near optimal
approach to adaptation in that it maximizes expected overall
average payoff when the adaptive process is viewed as a
multi-armed slot machine problem requiring an optimal al-
location of future trials given currently available informa-
tion. Recent work in genetic algorithms and genetic classi-
fier systems can be surveyed in Goldberg (1989), Davis
(1987), and Schaffer (1989).

3 . BACKGROUND ON GENETIC
PROGRAMMING PARADIGM
Representation is a key issue in genetic algorithm work

because genetic algorithms directly manipulate the coded rep-
resentation of the problem and because the representation
scheme can severely limit the window by which the system
observes its world. Fixed length character strings present dif-
ficulties for some problems — particularly problems in arti-
ficial intelligence where the desired solution is hierarchical
and where the size and shape of the solution is unknown in
advance. The need for more powerful representations has
been recognized for some time (De Jong 1985, 1988).

The structure of the individual mathematical objects that
are manipulated by the genetic algorithm can be more com-
plex than the fixed length character strings. Smith (1980)
departed from the early fixed-length character strings by in-
troducing variable length strings, including strings whose
elements were if-then rules (rather than single characters).
Holland's introduction of the classifier system (1986) con-
tinued the trend towards increasing the complexity of the

2

structures undergoing adaptation. The classifier system is a
cognitive architecture into which the genetic algorithm is
embedded so as to allow adaptive modification of a popula-
tion of string-based if-then rules (whose condition and action
parts are fixed length binary strings). Applications of classi-
fier systems are discussed in Wilson (1987a, 1987b, 1988).

In addition, we have recently shown that entire com-
puter programs can be genetically bred to solve problems in
a variety of different areas of artificial intelligence, machine
learning, and symbolic processing (Koza 1989, 1990a). In
this recently developed "genetic programming" paradigm, the
individuals in the population are compositions of functions
and terminals appropriate to the particular problem domain.
The set of functions used typically includes arithmetic opera-
tions, mathematical functions, conditional logical opera-
tions, and domain-specific functions. Each function in the
function set must be well defined for any element in the
range of every other function in the set. The set of terminals
used typically includes inputs (sensors) appropriate to the
problem domain and various constants. The search space is
the hyperspace of all possible compositions of functions
that can be recursively composed of the available functions
and terminals. The symbolic expressions (S-expressions) of
the LISP programming language are an especially
convenient way to create and manipulate the compositions
of functions and terminals described above. These S-expres-
sions in LISP correspond directly to the "parse tree" that is
internally created by most compilers.

The basic genetic operations for the genetic program-
ming paradigm are fitness proportionate reproduction and
crossover (recombination). Fitness proportionate reproduc-
tion is the basic engine of Darwinian reproduction and sur-
vival of the fittest and operates for genetic programming
paradigms in the same way as it does for conventional ge-
netic algorithms. The crossover operation for genetic pro-
gramming paradigms is a sexual operation that operates on
two parental LISP S-expressions and produces two offspring
S-expressions using parts of each parent. In particular, the
crossover operation creates new offspring S-expressions by
exchanging sub-trees (i.e. sub-lists) between the two par-
ents. Because entire sub-trees are swapped, this genetic
crossover (recombination) operation produces syntactically
and semantically valid LISP S-expressions as offspring re-
gardless of which point is selected in either parent.

For example, consider the parental LISP S-expression:
(OR (NOT D1) (AND D0 D1))

And, consider the second parental S-expression below:
(OR (OR D1 (NOT D0))
 (AND (NOT D0) (NOT D1))

These two LISP S-expressions can be depicted graphi-
cally as rooted, point-labeled trees with ordered branches.
Assume that the points of both trees are numbered in a
depth-first way starting at the left. Suppose that the second
point (out of 6 points of the first parent) is randomly se-
lected as the crossover point for the first parent and that the
sixth point (out of 10 points of the second parent) is ran-
domly selected as the crossover point of the second parent.
The crossover points are therefore the NOT in the first par-
ent and the AND in the second parent.

The two parental LISP S-expressions are shown below:

OR

NOT AND

D0 D1D1

OR

ANDOR

D1 NOT

D0

NOT NOT

D0 D1

 The two crossover fragments are two sub-trees shown
below:

NOT

D1

AND

NOT NOT

D0 D1

These two crossover fragments correspond to the bold,
underlined sub-expressions (sub-lists) in the two parental
LISP S-expressions shown above. The two offspring result-
ing from crossover are shown below.

OR

AND

NOT NOT

D0 D1

AND

D0 D1

NOT

OR

NOT

D0

D1 D1

OR

Note that the first offspring above is a perfect solution
for the exclusive-or function, namely
(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

Details on this algorithm can be found in Koza (1990a).
This new genetic algorithm paradigm has been success-

fully applied (Koza 1989, 1990a) to example problems in
several different areas, including (1) machine learning of
functions (e.g. learning the Boolean 11-multiplexer func-
tion, (2) planning (e.g. developing a robotic action sequence
that can stack an arbitrary initial configuration of blocks
into a specified order), (3) automatic programming (e.g. dis-
covering a computational procedure for solving pairs of lin-
ear equations, solving quadratic equations for complex roots,
and discovering trigonometric identities), (4) sequence in-
duction (e.g. inducing a recursive computational procedure
for the Fibonacci and the Hofstadter sequences), (5) pattern
recognition (e.g. translation-invariant recognition of a sim-
ple one-dimensional shape in a linear retina), (6) optimal
control (e.g. centering a cart and balancing a broom on a
moving cart in minimal time by applying a "bang bang"

3

force to the cart) (Koza and Keane 1990a, Koza and Keane
1990b), (7) symbolic "data to function" regression, sym-
bolic "data to function" integration, and symbolic "data to
function" differentiation, (8) symbolic solution to functional
equations (including differential equations with initial condi-
tions, integral equations, and general functional equations),
(9) empirical discovery (e.g. rediscovering Kepler's Third
Law, rediscovering the well-known econometric "exchange
equation" MV = PQ from actual time series data for the
money supply, the velocity of money, the price level, and
the gross national product of an economy) (Koza 1990b),
and (10) simultaneous architectural design and training of
neural networks.

4 . THE "ARTIFICIAL ANT"

Jefferson et. al. (1990) devised a planning task involving an
“artificial ant” attempting to traverse an irregular trail and
successfully used the conventional string-based genetic algo-
rithm to discover a finite state automaton enabling the
"artificial ant" to traverse the trail.

The setting for the problem is a square 32 by 32
toroidal grid in the plane. The “Santa Fe” trail is a winding
trail of stones in 89 of the 1024 cells. The trail has single
missing stones, double missing stones, single missing
stones at some corners, double missing stones at other
corners (knight moves), and triple missing stones at other
corners (long knight moves).

The “artificial ant” begins in the cell identified by the
coordinates (0,0) and is facing in a particular direction (i.e.
east). The artificial ant has a sensor that can see only the
single adjacent cell in the direction the ant is currently fac-
ing. At each time step, the ant has the capacity to execute
any of four operations, namely, to move forward (advance)
in the direction it is facing, to turn right (and not move), to
turn left (and not move), or to sense the contents of the sin-
gle adjacent cell in the direction the ant is facing.

The objective of the ant is to traverse the entire trail.
Jefferson, Collins et. al. limited the ant to a certain number
of time steps (200).

Jefferson, Collins et. al. started by assuming that the
finite automaton necessary to solve the problem would have
32 or fewer states. They then represented an individual in
their population of automata by a binary string representing
the state transition diagram (and its initial state) of the indi-
vidual automaton. The ant’s sensory input at each time step
was coded as one bit and the output at each time step was
coded as two bits (representing the three actions). The next
state of the automaton was coded with 5 bits. The complete
behavior of an automaton was thus specified with a genome
consisting of a binary string with 453 bits (64 substrings of
length 7 representing the state transitions plus 5 additional
bits representing the initial state of the automaton). They
then processed a population of 65,536 individual bit strings
of length 453 on a Connection Machine™ using a genetic
algorithm using crossover and mutation operating on a se-
lected (relatively small) fraction of the population. After 200
generations in a particular run (taking about 10 hours on the
Connection Machine), Jefferson, Collins et. al. reported that
a single individual in the population emerged which attained

Start

62

89

38 31

11

24

3

a perfect score of 89 stones. As it happened, this single in-
dividual completed the task in exactly 200 operations.

In our approach to this task using the genetic program-
ming paradigm, we used the function set consisting of the
functions F = {IF-SENSOR, PROGN}. The IF-SENSOR func-
tion has two arguments and evaluates the first argument if
the ant’s sensor senses a stone or, otherwise, evaluates the
second argument. The PROGN function is the LISP connec-
tive function that sequentially evaluates its arguments as in-
dividual steps in a “program.” The terminal set was T =
{ ADVANCE, TURN-RIGHT, TURN-LEFT}. These three termi-
nals are actually functions with no arguments. They operate
via their side effects on the ant’s state (i.e. the ant's position
on the grid or the ant's facing direction). IF-SENSOR,
ADVANCE, TURN-RIGHT, and TURN-LEFT correspond di-
rectly to the operators defined and used by Jefferson, Collins
et. al. We allowed 400 time steps before timing out.

The initial generation (generation 0) consisted of ran-
domly generated individual S-expressions recursively created
using the available functions and available terminals of the
problem. For this problem (and each of the other problems
described in this paper), each new generation was created
from the preceding generation by applying the fitness pro-
portionate reproduction operation to 10% of the population
and by applying the crossover operation to 90% of the popu-
lation (with reselection allowed). The selection of crossover
points in the population was biased 90% towards internal
(function) points of the tree and 10% towards external
(terminal) points of the tree. Mutation was not used. For
practical reasons, a limit of 4 was placed on the depth of ini-
tial random S-expressions and a limit of 15 was placed on
the depth of S-expressions created by crossover.

In one run, an individual LISP S-expression scoring 89
out of 89 emerged on the 7th generation, namely,
(IF-SENSOR (ADVANCE)

4

IF-SENSOR

IF-SENSOR

ADVANCE TURN-R

TURN-L ADVANCE

PROGNIF-SENSOR

ADVANCE TURN-L

TURN-R

PROGNADVANCE

Figure. 1 Artificial Ant Solution

 (PROGN (TURN-RIGHT)
 (IF-SENSOR (ADVANCE) (TURN-LEFT))
 (PROGN (TURN-LEFT)
 (IF-SENSOR (ADVANCE)
 (TURN-RIGHT))
 (ADVANCE)))).

This plan is graphically depicted in Figure 1.
This individual LISP S-expression is the solution to the

problem. In particular, this plan moves the ant forward if a
stone is sensed. Otherwise it turns right and then moves the
ant forward if a stone is sensed but turns left (returning to its
original orientation) if no stone is sensed. Then it turns left
and moves forward if a stone is sensed but turns right
(returning to its original orientation) if no stone is sensed. If
the ant originally did not sense a stone, the ant moves for-
ward unconditionally as its fifth operation. Note that there is
no testing of the backwards directions.

We can undertake to measure the number of individuals
that need to be processed by a genetic algorithm to produce a
desired result with a certain probability, say 99%. Suppose,
for example, a particular run of a genetic algorithm produces
the desired result with only a probability of success ps after
a specified choice (perhaps arbitrary and non-optimal) of
number of generations Ngen and population of size N.
Suppose also that we are seeking to achieve the desired re-
sult with a probability of, say, z = 1 - ε= 99%. Then, the
number K of independent runs required is

K =
log (1-z)
log (1-ps)

 =
log ε

log (1-ps)
, where ε= 1-z.

For example, we ran 111 runs of the Artificial Ant
problem with a population size of 1000 and 51 generations.
We found that the probability of success ps on a particular
single run was 43%. With this probability of success, 8 in-
dependent runs are required to assure a 99% probability of
solving the problem on at least one of the 8 runs. That is, it
is sufficient to process 408,000 individuals. This requires
about 6 hours of computing time on the Texas Instruments
Explorer II+™ workstation.

The graph below shows that the probability of success
ps of a run is 67% for a population size of 2000 with 51
generations. The graph also shows that the probability of
success of a run is 81% for a population of 4000 with 51
generations. A population of 2000 requires 4 independent

runs (i.e. 408,000 individuals are sufficient) to achieve the
desired 99% probability. A population of 4000 requires 3
independent runs (i.e. 612,000 individuals are sufficient).

0 25 50
0

25

50

75

100

Pop=1000
Pop=2000
Pop=4000

Artificial Ant-Santa Fe Trail

Generation
P

er
ce

nt
 S

uc
ce

ss
fu

lly
 S

ol
ve

d

5 . DIFFERENTIAL PURSUIT GAME

As a second illustration of the genetic programming
paradigm, we consider a differential pursuer-evader game.
Our objective is to find an optimal strategy for one player
when the environment (fitness function) consists of an op-
timal opponent.

In a game, there are two or more independently-acting
players who make choices (moves) and receive a payoff
based on the choices they make. The differential "game of
simple pursuit" is a two-person, competitive, zero-sum, si-
multaneous-moving, complete-information game in which a
fast pursuing player P is trying to capture a slower evading
player E. The “choices” available to a player at a given mo-
ment consist of choosing a direction (angle) in which to
travel. In the simple game of pursuit, the players travel in a
plane and both players may instantaneously change direc-
tion. Each player travels at a constant speed, and the pursu-
ing player’s speed wp (1.0) is greater than the evading

5

player’s speed we (0.67).
The state variables of the game are xp, yp, xe, and ye

representing the coordinate positions (xp, yp) and (xe, ye) of

the pursuer P and evader E in the plane.
At each time step, both players know the position (state

variables) of both players. The choice for each player is to
select a value of their control variable (i.e. the angular direc-
tion in which to travel). The pursuer’s control variable is the
angle φ (from 0 to 2π radians) and the evader’s control
variable is the angle ψ . The players choose their respective
control variable simultaneously.

(0, 0)

P Φ
X

Y

(X, Y)
E Ψ

The analysis of this game can be simplified by reducing
the number of state variables from four to two (Isaacs 1965).
This state reduction is accomplished by simply viewing the
pursuer P as being at the origin point (0,0) of a new coordi-
nate system at all times and then viewing the evader E as be-
ing at position (x, y) in this new coordinate system. The
two numbers x and y representing the position (x, y) of the
evader E thus become the two “reduced” state variables of the
game. Whenever the pursuer P travels in a particular direc-
tion, the coordinate system is immediately adjusted so that
the pursuer is repositioned back to the origin (0, 0) and then
appropriately adjusting the position (x, y) of the evader to
reflect the travel of the pursuer.

The state transition equations for the evader E follow:
x(t+1) = x(t) + weCos ψ - wpCos φ
y(t+1) = y(t) + weSin ψ - wpCos φ.

In order to develop optimal playing strategies, we use a
set of random environmental starting condition cases con-
sisting of Ne (= 10) starting positions (xi, yi) for the evader

E. Each starting value of xi and yi is between -5.0 and +5.0.

The two players may travel anywhere in the plane. We re-
gard the pursuer P as having captured the evader E when the
pursuer gets to within some specified small distance ε= 0.5
of the evader E.

The payoff for a given player is measured by time. The
payoff for the pursuer P is the total time it takes to capture
the evader E over all of the environmental cases. The pursuer
tries to minimize the time to capture. The payoff for the

evader E is the total time of survival for E. The evader tries
to maximize this time of survival.

A maximum “time out” time (100 time steps) is estab-
lished so that if a particular pursuer strategy has not made
the capture within that amount of time, that maximum time
becomes the payoff for that particular environmental case
and that particular strategy.

The problem is to find the strategy for choosing the
control variable of the pursuer so as to minimize the total
time to capture for any set of environmental cases when
playing against an optimal evader.

For this particular simple game, the best strategy for
the pursuer P at any given time step is to chase the evader E
in the direction of the straight line currently connecting the
pursuer to the evader. And, for this particular simple game,
the best strategy for the evader E is to race away from the
pursuer in the direction of the straight line connecting the
pursuer to the evader.

If the evader chooses some action other than the strategy
of racing away from the pursuer in the direction of the
straight line connecting the pursuer to the evader (as shown
below), the evader will survive for less time than if he fol-
lows his best strategy. If the evader initially chooses a sub-
optimal direction and then belatedly chooses the optimal di-
rection, his time of survival is less than if he had chosen the
optimal direction from the beginning.

P Φ

(0, 0) X

Y

E
(X, Y)

Ψ

The situation is symmetric in that if the pursuer does
not chase after the evader E along the straight line, he fails
to minimize the time to capture.

The “value of the game” is the payoff (time) such that,
no matter what the evader does, the evader cannot hold out
for longer than this amount of time, and, if the evader does
anything other than direct fleeing, his survival time is a
shorter amount of time. Conversely, no matter what the
pursuer does, the pursuer P cannot capture an optimal evader
E in less than that amount of time. And, if the pursuer does
anything other than direct pursuit, the evader can remain at
large for a longer amount of time.

The genetic programming paradigm can be used to solve

6

the differential game of simple pursuit by genetically evolv-
ing a population of strategies for the pursuing individuals
over a number of generations.

The genetic programming paradigm is especially well
suited to solving this kind of problem because the solution
takes the form of a mathematical expression whose size and
shape may not be known in advance.

The terminal set is T = {X , Y , R}. The two state vari-
ables X and Y represent the position of the evader E in the
plane in a "reduced" coordinate system where the pursuer is
always positioned (or repositioned) to the origin. The ter-
minal R is an ephemeral random constant. Each occurrence
of an ephemeral random constant in an individual in the ini-
tial random population is assigned a different random float-
ing point value (between -1.0 and +1.0). These ephemeral
random constants give the algorithm the building blocks
with which to construct the particular numeric constants that
may be needed in the solution. Additional details are found
in Koza (1990a).

The function set for this problem can be a set of arith-
metic and mathematical operations such as addition, subtrac-
tion, multiplication, division (using the operation % which
returns a zero when division by zero is attempted), and the
exponential function EXP. Thus, the function set is F = {+,
-, * , %, EXP}.

If the population of individuals represents pursuers and
we are attempting to genetically breed an optimal pursuing
individual, the environment for this “genetic algorithm”
consists of an optimal evading individual. The optimal
evader travels with the established constant evader speed we
in the angular direction specified by the Arctangent function.

The genetic programming paradigm is successful in ge-
netically breeding optimal pursuing individuals. As one pro-
gresses from generation to generation, the population of
pursuing individuals typically improves. After several gener-
ations, the best pursuing individuals in the population can
capture the evader in a small fraction (perhaps 2, 3, or 4) of
the 10 environmental cases within a certain amount of time.
Then, after additional generations, the population improves
and the best pursuing individuals in the population can cap-
ture the evader in a larger fraction (perhaps 4, 5, or 6) of the
10 environmental cases within a shorter amount of time.
Often, these partially effective pursuers are effective in some
identifiable fraction of the plane or at some identifiable range
of distances, but ineffective in other parts of the plane or at
other distances. However, as more and more generations are
run, the population of pursuing individuals typically contin-
ues to improve.

In one run, a pursuer strategy emerged in the 17th gen-
eration which correctly handled all 10 of the environmental
cases. This S-expression is shown below.
(% (- (% (+ (* 2.0 Y) -0.066) -0.365)
 (% Y -0.124))
 (+ (EXP X) Y -0.579))

This S-expression is depicted graphically below:

EXP

X

Y -0.579

+

%

Y -0.124

Y2.0

* -0.066

+ -0.365

%

-

%

This S-expression is equivalent to
2y - 0.066

-0.365
 +

y
0.124

ex + y -0.579
which in turn is equivalent to

2.58y + 1.81

ex + y - 0.579
When this apparently optimal pursuing individual is re-

tested against a much larger set of environmental cases (i.e.
1000), we then find that it also successfully handles 100%
of the environmental cases. Thus, this S-expression is an
optimal solution to the problem. It is also, as a result, an
excellent approximation to the Arctangent function.

For example, we ran 111 runs of the differential pur-
suer-evader game problem with a population size of 500 and
found that the probability of success ps was 55% after 51
generations (see graph below). With a probability of success
ps of 55%, 6 independent runs are required to assure a 99%
probability of solving the problem. That is, 153,000 indi-
viduals must be processed.

0 25 50
0

25

50

75

100
Game of Pursuit

Generation

P
er

ce
nt

 S
uc

ce
ss

fu
lly

 S
ol

ve
d

An optimal evader has been similarly evolved using an
optimal pursuer (i.e. the Arctangent strategy).

6 . CO-EVOLUTION IN NATURE

The evolutionary process in nature is often described as if
one population of individuals is trying to adapt to a fixed
environment. This description is, however, only a first order
approximation to the actual situation. The environment ac-

7

tually consists of both the physical environment (which is
usually relatively unchanging) as well as other indepen-
dently-acting biological populations of individuals which are
simultaneously trying to adapt to “their” environment. The
actions of each of these other independently-acting biological
populations (species) usually affect all the others. In other
words, the environment of a given species includes all the
other biological species that contemporaneously occupy the
physical environment and which are simultaneously trying
to survive. In biology, the term “co-evolution” is some-
times used to reflect the fact that all species are simultane-
ously co-evolving in a given physical environment.

A biological example presented by Holland illustrates
the point (1990). A given species of plant may be faced with
an environment containing insects that like to eat it. To de-
fend against its predators (and increase its probability of sur-
vival in the environment), the plant may, over a period of
time, evolve a tough exterior that makes it difficult for the
insect to eat it. But, over a period of time, the insect may
evolve a stronger jaw so that that the insect population can
continue to feed on the plant (and increase its probability of
survival in the environment). Then, over an additional period
of time, the plant may evolve a poison to help defend itself
further against the insects. But, then again, over a period of
time, the insect may evolve a digestive enzyme that negates
the effect of the poison so that the insect population can
continue to feed on the plant.

In effect, both the plant and the insects get better and
better at their respective defensive and offensive roles in this
“biological arms race”. Each species changes in response to
the actions of the other.

7 . BACKGROUND ON CO-EVOLUTION
AND GENETIC ALGORITHMS

In the “genetic algorithm,” described by John Holland in his
pioneering Adaptation in Natural and Artificial Systems
(1975), a population of individuals attempts to adapt to a
fixed “environment.” In the basic genetic algorithm as de-
scribed by Holland in 1975, the individuals in the popula-
tion are fixed-length character strings (typically binary
strings) that are encoded to represent some problem in some
way. In the basic “genetic algorithm”, the performance of
the individuals in the population is measured using a fitness
measure which is, in effect, the “environment” for the popu-
lation. Over a period of many generations, the genetic algo-
rithm causes the individuals in the population to adapt in a
direction that is dictated by the fitness measure (its environ-
ment).

Holland (1990) has incorporated co-evolution and ge-
netic algorithms in his ECHO system for exploring the co-
evolution of artificial organisms described by fixed-length
character strings (chromosomes) in a “miniature world.” In
ECHO, there is a single population of artificial organisms.
The environment of each organism includes all other organ-
isms.

Miller (1988, 1989) has used co-evolution in a genetic
algorithm to evolve a finite automaton as the strategy for
playing the Repeated Prisoner’s Dilemma game. Miller’s
population consisted of strings (chromosomes) of 148 bi-

nary digits to represent finite automata with 16 states. Each
string in the population represented a complete strategy by
which to play the game. That is, it specified what move the
player was to make for any sequence of moves by the other
player. Miller then used co-evolution to evolve strategies.
Miller’s co-evolutionary approach contrasts with Alexrod’s
(1987) solution to the repeated prisoner’s dilemma using ge-
netic algorithms. Axelrod measured performance of a particu-
lar strategy with a fixed weighted mix of the strategy's re-
sults against eight superior computer programs submitted in
an international programming tournament for the prisoner’s
dilemma. A best strategy for one player (represented as a 70
bit string with a 3-move look-back) was then evolved with
the weighted mix of eight opposing computer programs
serving as the environment. Hillis (1990) used co-evolution
in genetic algorithms to solve optimization problems.

8 . CO-EVOLUTION AND THE GENETIC
PROGRAMMING PARADIGM

In the "hierarchical co-evolution algorithm," there are two
populations of individuals. The environment for the first
population consists of the second population. And, con-
versely, the environment for the second population consists
of the first population.

The co-evolutionary process typically starts with both
populations being highly unfit (when measured by an abso-
lute fitness measure). Then, the first population tries to
adapt to the “environment” created by the second population.
Simultaneously, the second population tries to adapt to the
“environment” created by the first population.

This process is carried out by testing the performance of
each individual in the first population against each individual
(or a sampling of individuals) from the second population.
We call this performance the “relative fitness” of an individ-
ual because it represents the performance of one individual in
one population relative to the environment consisting of the
entire second population. Then, each individual in the second
population is tested against each individual (or a sampling of
individuals) from the first population.

Note that this measurement of relative fitness for an in-
dividual in co-evolution is not an absolute measure of fit-
ness against an optimal opponent, but merely relative mea-
sure when the individual is tested against the current oppos-
ing population. If one population contains boxers who only
throw left punches, then an individual whose defensive reper-
toire contains only defenses against left punches will have
high relative fitness. But, this individual will have only
mediocre absolute fitness when tested against an opponent
who knows how to throw both left punches and right
punches (the optimal opponent).

Even though both initial populations are initially
highly unfit (both relatively and absolutely), the virtually
inevitable variation of an initial random population will
mean that some individuals have slightly better relative fit-
ness than others. That means that some individuals in each
population have somewhat better performance than others in
dealing with the current opposing population.

The operation of fitness proportionate reproduction
(based on the Darwinian principle of “survival and reproduc-

8

L R

R

R

L

L

L

L

L L L RRR

R

X

O O O O

X X

O

3132 15 16 7 8 24 23 3 4 20 19 28 27 11 12 21 18 17 26 25 9 10 30 29 13 14 5 6 22 21

L R

R

R

R

L

L

L

L L L RRR

R

O O O O

X X

O

X

L R

12

10

14

6

22302618

2

4

4

20832

12

12

12

12

16

16

16

8

24

10

10

102

14

14 628

Figure 2 Game Tree with Payoffs

tion of the fittest) can then be applied to each population us-
ing the relative fitness of each individual currently in each
population. In addition, the operation of genetic recombina-
tion (crossover) can also be applied to a pair of parents, at
least one of which is selected based on its relative fitness.

Over a period of time, both populations of individuals
will tend to “co-evolve” and to rise to higher levels of per-
formance as measured in terms of absolute fitness. Both
populations do this without the aid of any externally sup-
plied absolute fitness measure serving as the environment.
In the limiting case, both populations of individuals can
evolve to a level of performance that equals the absolute op-
timal fitness. Thus, the hierarchical co-evolution algorithm
is a self-organizing, mutually-bootstrapping process that is
driven only by relative fitness (and not by absolute fitness).

Co-evolution is likely to be especially important in
game theory because one almost never has a priori access to
a minimax strategy for either player. One therefore encoun-
ters a "chicken and egg" situation. In trying to develop a
minimax strategy for the first player, one does not have the
advantage of having a minimax second player against which
to test candidate strategies. In checkers or chess, for exam-
ple, it is difficult for a new player to learn to play well if he
does not have the advantage of playing against a highly
competent player.

 9. CO-EVOLUTION OF A GAME
STRATEGY

We now illustrate the “hierarchical co-evolution algorithm”
to discover minimax strategies for both players simultane-
ously in a simple discrete game represented by a game tree
in extensive form.

In the hierarchical co-evolution algorithm, we do not
have access to the optimal opponent to train the population.
Instead, our objective is to breed two populations simultane-
ously. Both populations start as random compositions of
the available functions and arguments. The entire second
population serves as the “environment” for testing the per-
formance of each particular individual in the first population.

And, at the same time, the entire first population serves as
the environment for testing the performance of each particu-
lar individual in the second population. The algorithm does
not have access to the "absolute fitness" measure provided
by an optimal opponent. In other words, only relative fit-
ness is used to drive the co-evolution algorithm.

Consider the following simple discrete game whose
game tree is presented in extensive form in Figure 2. Each
internal point of this tree is labeled with the player who
must move. Each line is labeled with the choice (either L or
R) made by the moving player. Each endpoint of the tree is
labeled with the payoff (to player X).

This game is a two-person, competitive, zero-sum game
in which the players make alternating moves. On each
move, a player can choose to go L (left) or R (right). After
player X has made three moves and player O has made two
moves, player X receives (and player O pays out) the payoff
shown at the particular endpoint of the game tree (1 of 32).

Since this game is a game of complete information,
each player has access to complete information about his
opponent's previous moves (and his own previous moves).
This historical information is contained in five variables
XM1 (X's move 1), OM1 (O's move 1), XM2 (X's move 2),
OM2 (O's move 2), and XM3 (X's move 3). These five vari-
ables each assume one of three possible values: L (left), R
(right), or U (undefined). A variable is undefined prior to the
time when the move to which it refers has been made. Thus,
at the beginning of the game, all five variables are unde-
fined. The particular variables that are defined and undefined
indicate the point to which play has progressed during the
play of the game. For example, if both players have moved
once, XM1 and OM1 are defined (as either L or R) but the
other three variables (XM2, OM2, and XM3) are undefined
(have the value U).

A strategy for a particular player in a game specifies
which choice that player is to make for every possible situa-
tion that may arise for that player. In particular, in this
game, a strategy for player X must specify his first move if
he happens to be at the beginning of the game. A strategy
for player X must also specify his second move if player O

9

has already made one move and it must specify his third
move if player O has already made two moves. Since Player
X moves first, player X's first move is not conditioned on
any previous move. But, player X's second move will de-
pend on Player O's first move (i.e. OM1) and, in general, it
will also depend on his own first move (XM1). Similarly,
player X's third move will depend on player O's first two
moves and, in general, his own first two moves. Similarly,
a strategy for player O must specify what choice player O is
to make for every possible situation that may arise for
player O. A strategy here is a computer program (i.e. S-ex-
pression) whose inputs are the relevant historical variables
and whose output is a move (L or R) for the player involved.
Thus, the set of terminals is T = {L, R}.

Four testing functions CXM1 , COM1, CXM2 , and
COM2 provide the facility to test each of the historical vari-
ables that are relevant to deciding upon a player's move.
Each of these functions is a specialized form of the CASE
function in LISP. For example, function CXM1 has three
arguments and evaluates it first argument if XM1 (X's move
1) is undefined, evaluates its second argument if XM1 is L
(Left), and evaluates its third argument if XM1 is R (Right).
Functions CXM2, COM1, and COM2 are similarly defined.
Thus, the function set for this problem is F = {CXM1 ,
COM1, CXM2, COM2}. Each of these functions takes three
arguments.

Our goal is to simultaneously co-evolve strategies for
both players of this game.

In co-evolution, the relative fitness of a particular strat-
egy for a particular player in a game is the average of the
payoffs received when that strategy is played against the en-
tire population of opposing strategies.

The absolute fitness of a particular strategy for a partic-
ular player in a game is the payoff received when that strat-
egy is played against the minimax strategy for the opponent.
Note that when we compute the absolute fitness of an X
strategy for our descriptive purposes here, we test the X
strategy against 4 possible combinations of O moves —
that is, O's choice of L or R for his moves 1 and 2. When
we compute the absolute fitness of an O strategy, we test it
against 8 possible combinations of X moves — that is, X's
choice of L or R for his moves 1, 2, and 3. Note that this
testing of 4 or 8 combinations does not occur in the
computation for relative fitness. When the two minimax
strategies are played against each other, the payoff is 12,
which is the value of this game. A minimax strategy takes
advantage of non-minimax play by the other player.

As previously mentioned, the co-evolution algorithm
does not use the minimax strategy of the opponent in any
way. We use it in this paper for descriptive purposes. The
co-evolution algorithm uses only relative fitness.

In one run (with population size 300), the individual
strategy for player X in the initial random generation
(generation 0) with the best relative fitness was
(COM1 L (COM2 (CXM1 (CXM2 R (CXM2 R R R) (CXM2 R
L R)) L (CXM2 L R (COM2 R R R))) (COM1 R (COM2
(CXM2 L R L) (COM2 R L L) R) (COM2 (COM1 R R L)
(CXM1 R L R) (CXM1 R L L))) (CXM1 (COM2 (CXM1 R
L L) (CXM2 R R L) R) R (COM2 L R (CXM1 L L L))))
R).

This simplifies to
(COM1 L (COM2 L L R) R).

This individual has relative fitness of 10.08.
The individual in the initial random population

(generation 0) for player O with the best relative fitness was
an equally complex expression. It simplifies to
(CXM2 R (CXM1 # L R) (CXM1 # R L)).

Note that, in simplifying this strategy, we inserted the
symbol # to indicate that the situation involved can never
arise.This individual has relative fitness of 7.57.

Neither the best X individual nor the best O individual
from generation 0 reached maximal absolute fitness.

Note that the values of relative fitness for the relative
best X individual and the relative best O individual from
generation 0 (i.e. 10.08 and the 7.57) are each computed by
averaging the payoff from the interaction of the individual
involved with all 300 individual strategies in the current op-
posing population.

In generation 1, the individual strategy for player X
with the best relative fitness had relative fitness of 11.28.
This individual X strategy is still not a minimax strategy. It
does not have the maximal absolute fitness.

In generation 1, the best individual O strategy attained
relative fitness of 7.18. It is shown below:
(CXM2 (CXM1 R R L) (CXM2 L L (CXM2 R L R)) R).

This individual O strategy simplifies to
(CXM2 (CXM1 # R L) L R).

Although the co-evolution algorithm does not know it,
this best single individual O strategy for generation 1 is a
minimax strategy for player O. It has maximal absolute fit-
ness in this game. This one O individual was the first such
O individual to attain this level of performance during this
run. If it were played against the minimax X strategy, it
would score 12 (i.e. the value of this game).

Between generations 2 and 14, the number of individu-
als in the O population reaching maximal absolute fitness
was 2, 7, 17, 28, 35, 40, 50, 64, 73, 83, 93, 98, and 107,
respectively. That is, the minimax O strategy began to dom-
inate the O population.

In generation 14, the individual strategy for player X
with the best relative fitness had relative fitness of 18.11.
Although the co-evolution algorithm does not know it, this
one individual scored maximal absolute fitness. This one X
individual was the first such X individual to attain this level
of performance during this run. If it were played against the
minimax O strategy, it would score 12 (i.e. the value of this
game). This individual was
(COM2 (COM1 L L (CXM1 R R R)) L (CXM1 (COM1 L L
(CXM1 R R R)) (CXM2 L R R) R)).

This individual X strategy simplifies to
(COM2 (COM1 L L R) L R).

Between generations 15 and 29, the number of individu-
als in the X population reaching maximal absolute fitness
was 3, 4, 8, 11, 10, 9, 13, 21, 24, 29, 43, 32, 52, 48, and
50, respectively. That is, the minimax X strategy began to
dominate the X population. Meanwhile, the O population
became even more dominated by the O minimax strategy.

By generation 38, the number of O individuals in the
population reaching maximal absolute fitness reached 188

10

(almost two thirds of the population) and the number of X
individuals reaching maximal absolute fitness reached 74
(about a quarter). That is, by generation 38, the minimax
strategies for both players were dominant.

Interestingly, these 74 X individuals had relative fitness
of 19.11 and these 188 O individuals had relative fitness of
10.47. Neither of these values equals 12 because the other
population is not fully converged to its minimax strategy.

In summary, we have seen the discovery, via mutual
bootstrapping, of the minimax strategies for both players in
this game. This mutually bootstrapping process found the
minimax strategies for both players without using knowl-
edge of the minimax strategy (i.e. any a priori knowledge of
the game) for either player.

10. CONCLUSIONS

We used the genetic programming paradigm to discover a
plan allowing an "artificial ant" to traverse an irregular trail
and to discover the minimax strategy for a pursuer in the dif-
ferential game of simple pursuit. We then extended the ge-
netic programming paradigm so that two populations of in-
dividuals are simultaneously co-evolved wherein each popu-
lation serves as the environment to guide the evolution of
the other population. We then illustrated the hierarchical co-
evolution algorithm by simultaneously breeding an optimal
game-playing strategy for both players of a discrete game in
extensive form.

ACKNOWLEDGMENTS

James P. Rice of the Knowledge Systems Laboratory at
Stanford University made numerous contributions in connec-
tion with the computer programming of the above.

REFERENCES
Axelrod, R. "The evolution of strategies in the iterated pris-

oner’s dilemma." In Genetic Algorithms and Simulated
Annealing , edited by L. Davis. London: Pittman l987.

Davis, L. (editor) Genetic Algorithms and Simulated
Annealing London: Pittman l987.

De Jong, Kenneth A. Genetic algorithms: A l0 year perspec-
tive. Proceedings of an International Conference on
Genetic Algorithms and Their Applications. Hillsdale, NJ:
Lawrence Erlbaum Associates l985.

De Jong, Kenneth A. Learning with genetic algorithms: an
overview. Machine Learning, 3(2), 121-138, 1988.

Goldberg, D. E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley l989.

Hillis, W. Daniel. "Co-Evolving Parasites Improve
Simulated Evolution as an Optimization Procedure." In
Emergent Computation: Self-organizing, Collective, and
Cooperative Computing Networks. edited by S. Forrest.
Cambridge, MA: MIT Press 1990 (to appear).

Holland, J. H. Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: University of Michigan Press 1975.

Holland, John H. Escaping brittleness: The possibilities of
general-purpose learning algorithms applied to parallel
rule-based systems. In Michalski, Ryszard S., Carbonell,

Jaime G. and Mitchell, Tom M. Machine Learning: An
Artificial Intelligence Approach, Volume II. P. 593-623.
Los Altos, CA: Morgan Kaufman l986.

Holland, J. H. "ECHO: Explorations of Evolution in a
Minature World." In Proceedings of the Second
Conference on Artificial Life. edited by C. G. Langton,
and J. D. Farmer, J. Doyne. Redwood City, CA;
Addison-Wesley 1990. In press.

Isaacs, Rufus.. Differential Games. New York: John Wiley
1965.

Jefferson, David, Collins, Rob, et. al. "The Genesys
System: Evolution as a Theme in Artificial Life." In
Proceedings of Second Conference on Artificial Life,
edited by C. G. Langton and D Farmer. Redwood City,
CA: Addison-Wesley. 1990. In Press.

Koza, John R. "Hierarchical Genetic Algorithms Operating
on Populations of Computer Programs." In Proceedings
of the 11th International Joint Conference on Artificial
Intelligence (IJCAI). San Mateo: Morgan Kaufman 1989.

Koza, John R. Genetic Programming: A Paradigm for
Genetically Breeding Populations of Computer Programs
to Solve Problems. Stanford University Computer
Science Department Technical Report STAN-CS-90-1314.
June 1990. 1990a.

Koza, John R. "A Genetic Approach to Econometric
Modeling." Sixth World Congress of the Econometric
Society. Barcelona, Spain. August 27, 1990. 1990b.

Koza, John R. and Keane, Martin A. "Cart Centering and
Broom Balancing by Genetically Breeding Populations of
Control Strategy Programs." In Proceedings of
International Joint Conference on Neural Networks,
Washington, January 15-19, 1990. Volume I. Hillsdale,
NJ: Lawrence Erlbaum 1990.

Koza, John R. and Keane, Martin A. "Genetic Breeding of
Non-Linear Optimal Control Strategies for Broom
Balancing." In Proceedings of the Ninth International
Conference on Analysis and Optimization of Systems.
Antibes, June, 1990. Berlin: Springer-Verlag, 1990.

Miller, J. H. "The Evolution of Automata in the Repeated
Prisoner’s Dilemma." In Two Essays on the Economics
of Imperfect Information. PhD dissertation, Department
of Economics, University of Michigan, 1988.

Miller, J. H. The Co-evolution of Automata in the Repeated
Prisoner’s Dilemma. Sante Fe Institute Report 89-003.
1989.

Schaffer , J. D. (editor) Proceedings of the Third
International Conference on Genetic Algorithms. San
Mateo, Ca: Morgan Kaufmann Publishers Inc. 1989.

Smith, Steven F. A Learning System Based on Genetic
Adaptive Algorithms. PhD dissertation. Pittsburgh:
University of Pittsburgh 1980.

Wilson, Stewart. W. Classifier Systems and the animat
problem. Machine Learning, 3(2), 199-228, 1987a.

Wilson, Stewart. W. Hierarchical credit allocation in a clas-
sifier system. Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, 217-220, 1987b.

Wilson, Stewart W. Bid competition and specificity recon-
sidered. Journal of Complex Systems. 2(6), 705-723,
1988.

