A Competitive Approach to Game Learning

Christopher D. Rosin and Richard K. Belew
Cognitive Computer Science Research Group
CSE Department, University of California, San Diego
La Jolla, CA 92093-0114

{crosin,rik }@cs.ucsd.edu

Abstract

Machine learning of game strategies has often
depended on competitive methods that contin-
ually develop new strategies capable of defeat-
ing previous ones. We use a very inclusive
definition of game and consider a framework
within which a competitive algorithm makes re-
peated use of a strategy learning component
that can learn strategies which defeat a given
set of opponents. We describe game learning
in terms of sets H and X of first and sec-
ond player strategies, and connect the model
with more familiar models of concept learn-
ing. We show the importance of the ideas of
teaching set [9] and specification number [2]
k in this new context. The performance of
several competitive algorithms is investigated,
using both worst-case and randomized strat-
egy learning algorithms. Our central result
(Theorem 4) is a competitive algorithm that
solves games in a total number of strategies
polynomial in Ig(|H|), 1g(|X|), and k. Tts use
is demonstrated, including an application in
concept learning with a new kind of counterex-
ample oracle. We conclude with a complexity
analysis of game learning, and list a number of
new questions arising from this work.

1 Introduction

Empirical work has been done on machine-learning sys-
tems that learn to play games by using data from their
own play. Typically, a series of strategies for the game
are produced during learning with strategies getting pro-
gressively stronger. Many of these game learning sys-
tems use a competitive approach that repeatedly learns
new strategies capable of defeating older ones. This is

the type of method that we consider. The main intu-
ition 1s that 1t can bootstrap the level of play, from ini-
tial uninformed strategies to expert players. Examples
include Samuel’s classic work on checkers [22], systems
using reinforcement learning [27, 23, 28], and using a ge-
netic algorithm [20, 21]. The definition of “game” used
in this paper is very inclusive and allows us to also con-
sider domains other than traditional board games, such
as evolving sorting networks [11], minimax controller
design [24], and discrete approximations to differential

games [5, 25].

To study this, our framework for game learning relies
on the existence of a strategy learning algorithm, that is
able to learn strategies which defeat a given set of oppo-
nents. The competitive algorithm then repeatedly uses a
strategy learning algorithm to discover strong strategies
for the game. We seek a competitive algorithm capable
of learning perfect strategies for any game in polynomial
time.

In Section 2 we give details of our model of game learn-
ing, describe its connection to familiar models of con-
cept learning, and mention some related work. Sec-
tion 3 motivates the consideration of both worst-case
and randomized strategy learning algorithms, and gives
necessary parameters for measuring competitive algo-
rithm performance in each case. We then examine sev-
eral competitive algorithms motivated by those used in
practice. Section 4 presents two simple competitive al-
gorithms, and shows examples on which they can fail to
learn perfect strategies in polynomial time. A compet-
itive algorithm that meets our performance goals with
both worst-case and randomized strategy learning algo-
rithms is given in Section 5. Examples of its use are
described, including an application to concept learning
with a new kind of counterexample oracle. Section 6 ex-
plores the computational complexity of game learning,
and Section 7 discusses several open problems.

2 Preliminaries

2.1 Definition of Games

A game is a function G which maps two inputs A and
z (first and second player strategies) to an outcome

G(h,z). The first-player strategy comes from a set
of possible first-player strategies, h € H. Similarly,
the second-player strategy comes from a set of possi-
ble second-player strategies, « € X'. For most results
presented here, the basic unit of learning is the entire
strategy. A game consists of both players presenting a
strategy and obtaining an outcome. No further struc-
ture to game play (sequential rounds of play, etc.) is
assumed. This allows a simple, unified, inclusive view
of games.

The game outcome may take on many values, usable
by a strategy learning algorithm, but our framework
only considers one bit of outcome information: which
player was the winner. The competition is assumed to
be deterministic. For simplicity, no ties are allowed.

The notation a = b indicates that strategy a defeats
strategy b. This is also extended to sets of strategies:
a > B means that Vb € B,a = b. A = B is defined as
Vb € B,3a € A such that a > b.!

2.2 Framework for Game Learning

2.2.1 Exact Learning

For most of our results, it is necessary to assume that
there is a perfect strategy (either for the first player
or the second player) that defeats all possible oppos-
ing strategies. For notational convenience, it is always
assumed to be the first player that has a perfect strat-
egy when it is necessary to make this distinction.? For
the most part, we consider exact learning of this perfect
strategy.

Consideration of exact learning simplifies matters, and
seems a good way to start because there is not a clear
best way to define approximate game learning. Below,
we suggest a possible extension to approximate learning
using mixed strategies.

2.2.2 Structure of the Learning Model

There are two main components to the game learning
systems we consider. We assume that first and second
player strategy learning algorithms are available, that
can find a strategy capable of defeating a given set A of
opposing strategies. Strategy learning algorithms may
do this by analysis of the opposing strategies, reinforce-
ment learning during play against them, heuristic search
over strategies, or some other appropriate method; we
leave the details of this unspecified. The strategy learn-
ing algorithms are denoted L; for the first player, and
Lo for the second player. For Ls, no single strategy

s is only meaningful in the context of a particular game
G and should be subscripted >g. Whenever we use this
notation, the game is clear from context, so the subscript is
dropped. This is also true for several other definitions.

?Many board games are largely symmetric. The main
reason for making a distinction between first-player and
second-player strategies is the existence of a perfect strat-
egy for one player but not the other.

may be capable of defeating every member of A, so we
require that it return a set B of strategies, such that
B > A and |B| < k' for some constant k’.

The competitive algorithm is the outer loop, and uses
the strategy learning algorithms to produce new strate-
gies. In this model, the only methods available to the
competitive algorithm for producing new strategies are
the strategy learning algorithms. For example, the com-
petitive algorithm is not allowed to use domain-specific
knowledge to modify strategies. Starting points for the
competitive algorithm are obtained by calling the strat-
egy learning algorithms on the empty set.

More formally, competitive algorithms may be described
in the following terms. The competitive algorithm op-
erates over multiple steps. Let F; and S; be the sets
of first and second player strategies, respectively, that
have been observed at the end of step 7. Fy and Sy are
set to the empty set. On step i 4+ 1 of the competitive
algorithm:

1. Fj41 is initialized to F;, and S;y; is initialized to
S;.
2. Some subset As C S;41 1s chosen.

3. Ly is called on Ag, and the returned strategy is
added to Fi41.

4. Some subset Ap C F;41 is chosen.

5. Ls is called on Ap, and the returned strategies are

added to S;41.

Termination occurs when (5), in the above procedure,
fails. This failure can only occur if Ap contains a perfect
strategy, so termination occurs when a perfect strategy
has been found.

2.2.3 Notes on the Learning Model

Several points should be made about this framework.
First, though learning takes place through competition,
the strategies chosen by one player inform learning done
by the other. We are not trying to model an extreme
competitive situation in which, for example, players in-
tentionally present the weakest strategy possible to their
opponents in order to be uninformative and to slow op-
ponent learning. The framework is better viewed as an
extension of self-play, in which a competitive protocol is
used by a single agent in an effort to learn to play the
game well.

As a concrete example of how this framework might
be applied, consider Samuel’s original work on learn-
ing evaluation functions for checkers from self-play[22].
Games were played between a fixed Beta player and a
learning Alpha player. Alpha would learn from these
games via Samuel’s reinforcement learning algorithm;
this corresponds to the strategy learning algorithm.
When Alpha was finally able to defeat Beta, Beta was
replaced by Alpha. The competitive algorithm uses the
strategy learning algorithm to find a new (Alpha) strat-
egy capable of defeating the current (Beta) strategy,

then moves to this new strategy (makes Beta equal to

Alpha).

In some empirical work on game learning, the competi-
tive algorithm is not as explicitly defined. For example,
Tesauro’s backgammon learning system[27] uses rein-
forcement learning without explicitly checking whether
new strategies defeat old ones, as a competitive algo-
rithm would do. Given the continual improvement seen
in strategies, it is likely that this condition is being met
implicitly (similar results were obtained when this con-
dition was checked explicitly by sampling the outcome
of several games between new and old strategies[20]).
So, our framework might be used to explain the perfor-
mance of this system.

For the most part, we assume that a strategy learning
algorithm is available. This is a fairly strong assump-
tion, that we make for several reasons. Strategy learn-
ing is an optimization problem with a fixed, efficiently-
computable cost function. This type of optimization
problem has been well studied. Several researchers have
had empirical success in strategy learning against fixed
opponents [6, 23, 26]. The focus of this paper is on the
difficulties in game learning that arise even though a
strategy learning algorithm exists. For example, it 1s not
clear that Samuel’s bootstrapping procedure described
above will converge rapidly on good strategies, even if
new successful Beta strategies are continually found.
This is the sort of game learning-specific question we
address here. The definition of the model allows us to
address such questions more easily, in isolation. Finally,
this framework allows theoretical progress through the
application of techniques from computational learning
theory.

2.2.4 Time and Strategy Set Sizes

“Time” for a competitive algorithm refers to the total
number of strategies considered by it. Polynomial time
for a competitive algorithm will actually be polynomial
clock-time as long as the strategy learning algorithm
requires polynomial clock-time.

Bounds on learning time will be sought that are poly-
nomial in lg(|H|) and lg(|X]). Such bounds will be
most meaningful in the context of complex games if H
and X are restricted to strategies that are compactly
representable in some particular scheme. For example,
strategies might be represented as neural net evaluation
functions [23, 27, 28, 20]. The framework can also be
used to consider the problem of learning to defeat partic-
ular classes of simple opponents, rather than arbitrary
all-powerful opponents.

While H and X will not typically include all possible
strategies for a game, they will usually be large enough
that it is infeasible to consider all or most strategies in
them. We need to generalize from an examination of a
very small fraction of the strategy sets.

2.3 Correspondence with Concept Learning

Our model for game learning shares similarities with the
typical model of concept learning. The first-player strat-
egy space H corresponds to concept learning’s hypothe-
sis space; the assumption that it has a perfect strategy is
similar to assuming that the hypothesis space contains
the target concept. The first-player strategy learning
algorithm corresponds to a hypothesis learner, and the
second-player strategy learning algorithm can be viewed
as a counterexample oracle. The competitive algorithm
corresponds to various learning protocols that use a hy-
pothesis learner multiple times (for example, alternating
equivalence queries and calls to an algorithm providing
consistent hypotheses).

Having a hypothesis h consistent with the target on an
example x corresponds to A > x. An important dif-
ference between concept learning and game learning is
that concept learning is primarily concerned with dis-
covering how the target classifies new examples, whereas
game learning requires the actual “target” strategy. In
this sense, game learning is a more restrictive model.
Positive results from game learning should carry over
to concept learning (an example of this will be seen be-
low) and negative results from concept learning should
carry over to game learning.

2.4 Related Work
2.4.1 Theoretical

A large amount of work has been done on reinforce-
ment learning. Some results in reinforcement learning
have been described in terms of game learning [15]. But,
most of these results show convergence without consid-
ering learning time, or prove time bounds that are poly-
nomial in the number of states [7]. Also, proven results
usually rely on simple lookup table representations for
value functions. These are not useful for complex do-
mains in which the number of states is vast, but there
have been promising recent results using certain kinds
of value function approximators [10].

Several recent papers have discussed adaptive strategies
for simple repeated games [13, 8]. The goal of such
strategies is typically to learn enough about a particular
opponent in early games to do well against it in later
games. These concerns are largely orthogonal to our
goal of learning strategies that are robust against a large
space of opponents.

2.4.2 Experimental

A motivating factor for the model presented here is the
experimental work that has been done on game learn-
ing. Heuristic game learning methods show promise for
learning in a variety of domains without being given ex-
tensive domain knowledge. This is important for learn-
ing in new, unknown environments. Pell has described a
systematic method for generating novel games that are
suitable as targets for learning [19].

Epstein has a system capable of learning a number of
different games, using several methods including self-
play, and has made empirical observations about the
variety of opposition needed for successful learning [6].
It was observed that simple forms of self-play could fail
to explore important parts of the game, resulting in poor
performance. A setup that mixed self-play with training
against an expert was found to be much more effective.

Most game learning systems are targeted to specific
games. Reinforcement learning has been successfully
used to train neural networks through self-play for sev-
eral games [27, 28, 23]. Genetic algorithms have been
used with competitive coevolution, in which the fitness
guiding search is based on the outcome of competition
between members of the population. This has been
successfully applied to differential games such as the
pursuer-evader game [5], and a complex competition be-
tween simulated 3-D robots [25]. Coevolution has also
been applied successfully to backgammon [20]. We have
shown that simple forms of coevolution can sometimes
fail to learn small games, and have suggested several
improvements to the method [21].

The model described here is an idealization of some of
this empirical work. By assuming that successful strat-
egy learning algorithms exist, we are assuming a suitable
representation, and a learning method capable of using
this representation to defeat a small set of opponents.
With this powerful assumption, we can then describe
general conditions under which competitive algorithms
must succeed or may fail. This idealization is an ini-
tial step towards understanding the features of practical
game learning systems that are crucial to success.

3 Competitive Algorithm Performance

Performance of competitive algorithms will always de-
pend on lg(|H]) and lg(|X|). This type of dependence
is familiar from concept learning, and shouldn’t be pro-
hibitive for reasonable representations of strategies. In
this section, we establish necessary additional parame-
ters for studying competitive algorithm performance.

3.1 Specification Number

For a particular game GG with strategy spaces H and X',
define a teaching set T' for G as a subset of X such that
for any imperfect strategy h € H, Jz € T such that
z = h. Define the specification number k for G to be
the size of the smallest teaching set. These definitions
follow the corresponding ones for concept learning [2, 9].

Since we are considering exact learning, we seek bounds
on learning time that are polynomial in &, as well as in
lg(|H|) and lg(|X]). The following lemma shows that

the dependence on k is necessary.

Lemma 1 For games G with at most (a constant) ¢
perfect strategies and with specification number k, there
exists a randomuzed first-player strategy learning algo-

rithm Ly such that any competitive algorithm using it
takes expected time Q(k) to learn a perfect strategy.

Proof: For arbitrary A, let L;(A) choose a strategy
uniformly at random from the set {h € H|h = A}; this
choice of L; will become important in Section 3.3. Let
T be the minimal teaching set for G; |T| = k. Each
member of 7' must defeat at least one member of H that
no other member of 7' defeats (otherwise there would be
no reason to include it and 7" would not be minimal). So,
for any A with |A| < |T|, there must be at least k£ — | A]
members of H not defeated by A. The probability of
L1(A) returning a perfect strategy is at most k+W'3

The probability that a competitive algorithm finds a
perfect strategy by time ¢ (for ¢ < k) is at most #%=,
since at most ¢ calls were made to L1(A), each with

|A] < t. By time ¢t = 2ckT’ the probability of finding

a perfect strategy is at most %, giving a total expected

k_ which is Q(k). O

time of at least Tor3

As an example, consider a class of games GT, 4. Ghaq
has n first-player strategies, only one of which is per-
fect, and n — 1 second-player strategies, each defeating
only one imperfect first-player strategy. The specifica-
tion number for this gameis k = n—1. Any competitive
algorithm using the first-player strategy learning algo-
rithm described above requires Q(k) = Q(n) time to
learn a perfect strategy for this game; this is not poly-

nomial in Ig(|H|) and lg(|X']).

This indicates that time bounds for competitive algo-
rithms need to depend on k, as well as lg(]X]) and
lg(|H|). For game learning to be practical, k should
be fairly small; this is the case for specific examples
described below.

The second-player strategy learning algorithm requires
k' > k to ensure that it can always succeed. We assume

that &’ is polynomial in &, 1g(|H|), and lg(|X|).

3.2 Worst-case Strategy Learning Algorithms

In order to demonstrate the power of competitive tech-
niques, we would like a competitive algorithm that can
solve games in time polynomial in Ig(|X]), Ig(|H|), and
k with worst-case choices of L1 and Ls. Unfortunately,
the following lemma shows that this is not possible.
First, a definition is needed:

Define a transitive chain of length £ in a game to be a
sequence of pairs (h;, X;) (1 = 1,2,...£), with h; € H
and X; C X, |X;| <k, such that:

1. Vi> g, h; = X;
2.Vi> 4, X; = {h;}
#This shows the necessity of bounding the number of per-

fect strategies by a constant. If ¢ were allowed to grow with
k, this probability might always be large.

Lemma 2 For games G with a transitive chain of length
£, there exist L1 and Lo such that any competitive algo-
rithm using these strategy learning algorithms requires
Q(¢) time to learn a perfect strategy.

Proof: Assume G has a transitive chain

(h1, X1) ... (he, Xo).

If L1 and L, are passed the empty set, let them return
h1 and X7, respectively.

If A contains only members from the transitive chain,
let L1 (A) return h;, where A = {X;,, X;,, .. 'XiIAI} and
i = (max; i;) + 1. Otherwise, let L; return the perfect
strategy.

Similarly, if B contains only members from the
transitive chain, let Ly(B) return X;, where B =
{hiy, hig, .. by} and @ = (max; i;) + 1. Otherwise,
let Ly return a teaching set.

The first call to Ly or Ly must pass the empty set (since
the competitive algorithm has no strategies available
yet), so that the first strategies available to the compet-
itive algorithm are h; or X;. At least the next £ calls re-
turn only strategies from the transitive chain, with each
successive call increasing the distance into the transi-
tive chain by at most 1. Since none of the strategies in
the transitive chain may be perfect except for the last
one, the competitive algorithm cannot learn the perfect
strategy in less than £ steps. O

As an example, consider the following class of games:
‘H consists of the numbers 1...n and X consists of the
numbers 0...n — 1. h = z iff h > z. There is a perfect
first player strategy and & = 1. But, there is a transitive
chain of length n: (0,{0}), (1,{1}),...(n = 1,{n — 1}).
So, with worst-case strategy learning algorithms, there
is no competitive algorithm that solves these games in
time polynomial in 1g(|H]), lg(|X]), and k.

We denote by ¢ the length of the longest transitive chain
in a game. Due to the above result, upper bounds for
competitive algorithms using worst-case strategy learn-
ing algorithms must depend on £ as well as 1g(|H|),
lg(|X1]), and &.

Unfortunately, natural powerful classes of strategies for
traditional board games may have exponentially large £.
A sufficient condition is the existence of strategies that
identify themselves by communicating a label via an
initial sequence of “throwaway” moves. The strategies
then examine the labels (which might be interpreted
as numbers between 1 and N), and then cooperate to
produce the outcome appropriate to the long transitive
chain (for example, have the strategy with the larger
label win the game). A detailed example along these
lines is given for the game of Go in the long version
of this paper. This suggests that we should go beyond
worst-case strategy learning algorithms, to eliminate the
need for dependence on £.

3.3 Randomized Strategy Learning
Algorithms

In practice, it seems unlikely that simple, natural strat-
egy learning algorithms will be “adversarial”, produc-
ing uninformative near-worst-case strategies. To ob-
tain positive results for competitive algorithms without
using ¢ as a parameter, we need to restrict, in some
meaningful way, the strategy learning algorithms that
we consider. Note that it would be uninformative to
assume best-case strategy learning algorithms. Since we
allow the strategy learning algorithm unlimited access
to the game, any game with a solution has a first-player
strategy learning algorithm that immediately produces
a perfect strategy.

Another typical approach for going beyond worst-case
algorithmsis to use randomized learning algorithms [16].
We consider randomized strategy learning algorithms
that, when passed a set A of opponents, choose from a
distribution over the set of strategies (or strategy sets)
that defeat A. Randomization tends to be most helpful
when this distribution is required to be uniform. This
is what “randomized strategy learning algorithm” will
refer to below, although Theorem 4 relaxes this condi-
tion on the distribution somewhat. The importance of
randomization is that it does not allow strategy learning
algorithms to always choose from a few bad strategies
that make the competitive algorithm fail.

Competitive algorithm time bounds will depend on
lg(|H]), lg(|X]), and k& when randomized strategy learn-
ing algorithms are used. Note that dependence on k is
still necessary since the proof of Lemma 1 used a ran-
domized strategy learning algorithm.

4 Two Simple Competitive Algorithms

Two simple competitive algorithms are described in this
section that make few demands on the strategy learning
algorithms. We motivate a more complex competitive
algorithm by showing natural examples where the sim-
pler competitive algorithms may fail to solve games in
polynomial time, even with randomized strategy learn-
ing algorithms.

4.1 Each Defeats the Last

A simple method of learning is to have the competitive
algorithm obtain an initial first-player strategy s, then
find a second-player strategy ¢ with ¢ = s. Then, find
s = t, ' = s', and so on. In the framework given
in Section 2.2.2, Ag is always chosen to be the single
strategy most recently added to S;, and similarly for
Ap. This is essentially the competitive algorithm used
in Samuel’s checkers learning system, and is very similar
to that used in a recent backgammon learning system

[20].

The main problem with this competitive algorithm is
that intransitivity may exist, and a particular learner

may simply keep choosing strategies in a cycle. Intran-
sitivity has been observed when using this competitive
algorithm for backgammon [20]. Even a randomized
learner may get stuck in such a cycle for a long time.
The following example demonstrates this.

Example 1 (Small Game Trees) Thisexample con-
siders games represented by game trees. The time re-
quired by the strategy learning algorithm is polynomial
in the number of nodes in the tree, so this example
could be reasonably extended to familiar simple games
like tic-tac-toe.

Let Ty be the complete binary tree of depth d; T; has
n = 291 _ 1 nodes and | = 2% leaves. Let Gy be
the class of games with game tree Ty, with leaves la-
belled with binary outcomes in all possible 2! ways. An
outcome of 1 indicates a first-player win, while an out-
come of 0 indicates a second-player win. Let H consist
of all possible first-player strategies (all possible sets of
choices at the first-player nodes). Let X’ consist of all
possible second-player strategies. Note that 1g(|H|) and
lg(|X]) are O(n). Each game in G4 must either be a first
player win or a second player win with perfect play, so
let G, C G4 be the set of games in G4 that are a first
player win. Since H contains all possible strategies for

", 1t must contain a winning strategy for each element

of GY).

These games have £ < n. For a particular ¢ € G/}, for
each imperfect h € H, there must be a leaf of ¢ with
label 0 such that A may reach this leaf, given appropri-
ate second-player play. For each leaf, there is a strategy
xr € X that will always reach that leaf, if it is reachable
given the opposing first player. Let T contain one strat-
egy from X for each leaf in g labelled 0. Now, for any
imperfect h € H, there exists z € T with z = h. So, T
is a teaching set, and is of size |T| < n.

The maximum length of a transitive chain in these games
is £ < n. Each set of second-player strategies X; in a
chain must defeat h; via a leaf /[y unreachable by any
previous second-player strategy in the chain; such a
previous strategy that could reach Iy could defeat h;,
which contradicts the definition of a transitive chain.
Since each step in the transitive chain must contain a
second-player strategy that can reach a leaf no previ-
ous second-player strategy could reach, the length of
the longest transitive chain is bounded by the number
of leaves, which is bounded by n.

A randomized strategy learning algorithm may be con-
structed for these games. For a particular opponent O,
all that needs to be specified to defeat it is the moves
along a single path through the game tree, such that O
is consistent with all the choices along the path and loses
the game. If O 1s a first player, each such path requires
specification of L%J moves. If O is a second player, each

such path requires specification of f%—| moves. A list of
all such winning paths can be constructed in time poly-
nomial in [, since there is only one possible path for each
leaf. To make the uniform choice, a random choice is

made from this list and the irrelevant bits are then set
to 1 with probability % and to 0 with probability %

The competitive algorithm described in this section will
typically fail to solve such games in polynomial time
using this learning algorithm. This is easy to see: the
learner always sets most of the strategy bits randomly.
For example, consider games where the first player must
always choose the right branch to win. Considering all

possible second-player responses, at least 2151 — 1 bits
must be correctly set to have a perfect first-player strat-
egy, only f%—| of which will actually be specified (not set
randomly) in any strategy produced by the learning al-
gorithm. Correctly guessing the remaining bits will re-
quire time doubly exponential in d, which is exponential
inn.

For this example, the competitive algorithm fails to
learn a perfect strategy in time polynomial in Ig(|H|),
lg(|X|), k, and ¢, even using randomized strategy learn-
ing algorithms.

Adding finite memory to this competitive algorithm, by
always choosing a strategy that defeats the last A oppo-
nents, 1s of limited usefulness; it can still fail on cycles
with period greater than h. The next competitive al-
gorithm uses a memory of all previous second-player
strategies.

4.2 Single Counterexamples

In exact concept learning, one type of model consid-
ers equivalence queries. Given a hypothesis, an equiva-
lence query returns “yes” if the hypothesis is the target,
and provides a counterexample if it is not. The concept
learner queries with a hypothesis consistent with all ex-
amples seen; if its hypothesis is wrong, it chooses a new
one consistent with all examples including the newly re-
ceived counterexample. Translated into a game learning
context, a counterexample is a second-player strategy
chosen to defeat a proposed first-player strategy. The
first-player strategy learning algorithm is now required
to choose strategies that defeat all second-player strate-
gies that have been seen during learning. In terms of
the definition from Section 2.2.2, Ap 1s chosen to be
the single strategy most recently added to F;;1, but Ag
is chosen to include all strategies from S;;1. This is a
natural extension to the competitive algorithm in the
previous subsection.

This competitive algorithm is sufficient to learn perfect
strategies for the games in Example 1, in time polyno-
mial in n using any strategy learning algorithms. For
games in (G4, each counterexample must be capable of
reaching a particular leaf [y that is a first-player loss.
Subsequently chosen first-player strategies cannot make
the first-player moves leading to Iy, or else they would
be defeated by this counterexample. These first-player
strategies must be defeated by leaves other than /;. So,
each new counterexample wins via a leaf by which no
previous counterexample could win. This limits the to-
tal number of steps of the competitive algorithm to [.

Counterexamples are not sufficient to learn all games,
though. Angluin has shown that for some classes in
concept learning, an adversary may choose uninforma-
tive counterexamples so that the target cannot be ex-
actly learned in polynomial time [1]. Below, we show
the existence of a game for which counterexamples do
not ensure polynomial learnability, with either worst-
case strategy learning algorithms or randomized strat-
egy learning algorithms.

Example 2 (Generalized Guessing Games) Let H
consist of all natural numbers in the range 0...n — 1.
Each member of X is a union of at most I intervals in
this range. A game g, is defined by a particular number
y in this range, and the particular choice of unions of
intervals in X'. Every z € X not containing y loses all
games in g,. Other than this, h € H defeats z iff x
contains h. To ensure that the specification number is
1, the single interval containing only ¥ is included in X.

As a worst-case example, assume that X consists of all
unions of at most two intervals that exclude a single
number, and the interval containing only y. The second-
player strategy learning algorithm chooses the inter-
val excluding h as a counterexample to the first-player
strategy h (assuming h # y). The first-player strategy
learning algorithm makes a choice uniformly at random
from the intersection of all passed second-player strate-
gies. Since each counterexample eliminates only one
first-player strategy, this requires Q(n) expected time
to learn the perfect strategy. Since ¢ is O(1) (the only
second-player strategy defeating more than one first-
player strategy is the interval containing only y), this
time bound is not polynomial in 1g(|H|), 1g(|X]), &, and
L.

For an example where randomized strategy learning al-
gorithms fail, let the first-player strategy learning al-
gorithm be defined as above and let the second-player
strategy learning algorithm choose uniformly from all
members of X' containing the passed first-player strat-
egy. Let X contain all unions of at most two intervals
that exclude only elements i...(i + [\/n]) mod n, for
each 7. X also contains the interval consisting only of y,
but the probability of choosing this informative coun-
terexample is only ﬁ each step of the competitive

algorithm. After ¢ steps, the probability of the first-
player strategy learning algorithm choosing y is at most
m. So, the expected time to find y is not poly-

nomial in Ig n.

5 The Covering Competitive
Algorithm

5.1 Covering all First and Second Player
Opponents

Counterexamples to single first-player strategies fail to
provide polynomial learnability for all games. Note that
the first-player strategy learning algorithm, at every

step, finds a strategy that defeats all second-player strate-
gies already seen. It seems natural to produce new

second-player strategies in a similar way. Unless the

specification number is 1, it may not always be possible

to provide a single second-player strategy that defeats

all first-player strategies already seen, but as long as the

perfect first player has not yet been chosen, it is always

possible to choose a set of second players of size k that

covers all first players already seen.

This competitive algorithm will be called the covering
competitive algorithm. Each step, the first-player strat-
egy learning algorithm is called on all previous second-
player strategies, then the second-player strategy learn-
ing algorithm is called on all previous first-player strate-
gies (including the new one from the current step). In
terms of the definition from Section 2.2.2, Ap is always
chosen to contain all strategies from F;;1, and Ag is
always chosen to contain all strategies from S;41.

The idea of measuring coverage of prior opponents has
been discussed in the context of empirical game learning
systems [5].

5.2 Using Worst-case Strategy Learning
Algorithms

This competitive algorithm performs as well as possible
with worst-case strategy learning algorithms.

Theorem 3 Assume ¢ game G has mazimum transi-
twe chain length £. The covering competitive algorithm
learns a perfect strategy for G in at most £(k'+1) strate-
gies.

This is true simply because this competitive algorithms
explicitly constructs transitive chains. This gives at
most £ steps, each of which obtains at most one first-
player and k' second-player strategies. Since k' is poly-
nomial in k, lg(|H]), and lg(]X]), this time bound is
polynomial in the relevant parameters.

5.3 Using a Randomized Strategy Learning
Algorithm

For this positive result, it is desirable to relax the uniform-
choice condition for randomized strategy learning al-
gorithms. Define the (p, q)-randomization criterion for
sampling from an arbitrary set Y, as follows. The choice
must be made from a distribution D over Y, with the
property that there exist constants p and ¢ (0 < p,q <
1) such that there are at least p|Y| elements of YV to
which D assigns a probability of at least %.

At each step of this competitive algorithm, denote by
X the set of remaining feasible sets of second-player
strategies (the sets of at most &’ second-player strategies
that defeat all previously chosen first-player strategies).
Similarly, call the remaining set of feasible first-player
strategies H.

Theorem 4 Assume that the first-player strategy learn-
g algorithm, at each step, makes a choice from H
that satisfies the (p, q)-randomization criterion for some
fizred p and q. Assume that the second-player strategy
learning algorithm, on each step, chooses at most k'
strategies with k' polynomial in k, 1g(|H|), and lg(|X).
Then, the perfect strategy is found with the expected
number of stmtegzes chosen bounded by a polynomial in

(%D, 1g(1X]), k. 5, and £

Proof: The idea will be to consider sequences of m
steps, during which a “sample” of m first-player strate-
gies are chosen from the remainder of H. By a PAC-like
argument, the second-player strategies chosen at the end
of the m steps to defeat this sample must eliminate a
large fraction of the remaining strategies in H. The
only real complication in the proof comes from the fact
that successive members of the sample may be chosen
from somewhat different distributions, due to the (p, ¢)-
randomization criterion and the fact that A may shrink
over the course of the m steps.

Consider a sequence of m = %g_(lél)) steps of the

competitive algorithm. Let Hy be H at the start of
this sequence, and let H; be H after ¢ steps into the
sequence. Similarly, let Xy be X at the start of this
sequence, and let X; be X ¢ steps into the sequence.
The goal is to show that a fraction of at least & of Hy
will be eliminated after these m steps are completed,
with high probability.

The last set of second players, x, chosen in the se-
quence must defeat the m first players already cho-
sen. Consider two cases. In the first case, assume that
|Hm-1] < (1 -)| Ho| (note that Hp,_1 is the set of re-
maining first- player strategies just before z is chosen)
In this case, the condition on this sequence of steps is
already satisﬁed.

In the second case, assume that this is not true. Then,
at least 1 — & of the original set of first players, Hy,
remain (and were also present each prior step of the se-
quence). Consider a particular #3449 € Xo that is “bad”:
defeats less than & of Hy. Each step ¢ of the sequence of
m, at most £ of the strategies in Hy fail to defeat 3,44, or
have already been eliminated. On each such step, there

t 2P=P2d that o first-player

This is
5IHol =
2

|Ho| first players must: have not yet been elim-
inated, defeat xp.4, and have a probability of at least
Iﬁqf_tl > Iﬁ?_ul of being chosen. After m first players are

was a probability of at leas
strategy other than one of these was chosen.
because at least p|H| — &|Ho| > p(1—§)|Ho| —
2p—p

chosen®, the probability that zj44 remains in X; when

z is chosen is at most (1 — g#ﬁ)m. At worst, ev-
ery member of Xy is bad, so | Xg|(1 — W)m is an
upper bound on the probability that any bad second

player remains at the last step.

*These choices are not fully independent. But the events
that we consider here are independent.

Assuming that the probability of the first case is 0 (worst

case), the maximum probability of failure to eliminate

at least & of Hy this sequence of m steps is | Xo|(1 —

7(2”_4192)(1)™. This is at most [Xo|(1 — BL)™. We want

Pq\m
| Xol(1—57)" <6
lg(|Xo|) + mlg(1l - Z) <lg(8)

<'XD)
Since | Xo| < |X|*, this will be satisfied with § = Lif
1+ k' lg(] 1)
—lg(1—5)

m >

The choice of m ensures this. Each m steps, with prob-
ability at least %, H will lose at least a fraction & of
its size; this gives an expected decrease of at least a
fraction &. This means that the algorithm terminates

in (expected) O(%) sequences of m steps. Since
8
each step adds at most k' second players (and 1 first

player) to the sets, an expected total of
lg(M]) 2+/<7'1g(|/"f|)

(0]
Ci—5 i - 2)

strategies will be added to the sets before termination.
This is

) + 1))

12

0<§2—qlg<|m)1g<|»c|>>.

Since k' was assumed to be polynomial in k, Ig(|H|),
and lg(|X]), the covering competitive algorithm chooses
an eXpected number of strategies polynomial in 1g(|H|),

lg(| X)), &, p, and 1 |

In the long version of this paper, we show that this
upper bound is nearly tight.

The second-player strategy learning algorithm has a fairly
difficult task: it must find sets of strategies that cover all
first-player opponents. Since this theorem allows arbi-
trary second-player strategy learning algorithms, we can
reduce this task somewhat. Assume that an algorithm
LY is available that takes as input a set A of first-player
strategies, and returns the second-player strategy cov-
ering as many of these as possible. Since a set of size &k
exists that covers all of A, at least one member of this
set must cover [1 of A. Using L} repeatedly, a set-
covering approximation can be used to create a second-
player strategy learning algorithm that returns sets of
size at most k' = klog |H| [4].

If a randomized strategy learning algorithm is available
that can find k&’ second-player strategies all at once, sat-
isfying the (p, q)-randomization criterion in the space
of remaining feasible sets of k' second-player strategies,
then the roles in Theorem 4 may be reversed, giving the
following corollary.

Corollary 5 Assume that the second-player learning al-
gorithm, at each step, makes a choice from X that sai-
isfies the (p, q)-randomization criterion. Then, the per-
fect strategy will be found by the covering competitive
algorithm with the expected number of strategies chosen
bounded by a polynomial in 1g(|H|), 1g(|X]), &, Il—), and
1

7"
5.4 Examples

5.4.1 Generalized Guessing Games

Use of the covering competitive algorithm gives us our
desired worst-case performance on Example 2, by The-
orem 3. Also, the randomized strategy learning algo-
rithms described for it satisfy the (p, ¢)-randomization
criterion with p = ¢ = 1, allowing the covering compet-
itive algorithm to solve the game in time polynomial in
n.

5.4.2 Concept Learning

An application of game learning can be reflected back to
concept learning, using a new kind of counterexample
oracle.

Example 3 (Learning Teachable Concepts)
Assume a concept class H (serving as hypothesis and
target class) and a space of examples, X'. A “game” g,
is associated with each ¢ € H, with g:(h, z) being 1 (vic-
tory for h) if ¢ is consistent with h on z, and 0 otherwise.
An oracle is assumed available to provide counterezam-
ple sets. Tf the specification number (of a particular g¢)
is k, the oracle, when given a set of (imperfect) hypothe-
ses H, returns a set X of at most &’ examples such that
for each h € H, g4(h,z) = 0 for some z € X. Assume
that k' is polynomial in k, lg(|H|), and lg(]X]). Each
step, the learner finds a hypothesis consistent with the
current set of counterexamples, and adds it to the cur-
rent set of hypotheses. Then, the oracle provides a set
of examples that cover the current set of hypotheses;
the members of this set are added to the current set of
counterexamples. The target will be learned exactly in
an expected number of examples polynomial in Ig(|H|),
lg(|X)), &, %, and % if at least one of the following two
conditions holds:

1. The oracle chooses a cover of k' examples from
the space of possible covers consisting of k' ex-
amples, such that this choice satisfies the (p,q)-
randomization criterion.

2. The learner chooses consistent hypotheses from H,
such that this choice satisfies the (p, ¢)-randomiza-
tion criterion.

For the second possibility, the counterexample oracle
can be reduced to an oracle that returns a counterex-
ample to as many of the current hypotheses as possible;
the set covering approximation can then be used. This
result shows that, with such a powerful counterexample

oracle, any teachable class of hypotheses can be learned
(without resorting to hypotheses outside of H [3]).

Note that fixing k&’ is crucial. If the counterexample
oracle were allowed to provide as many counterexamples
as passed hypotheses, 1t could simply provide a separate
counterexample to each hypothesis. The learning model
would have no more power than equivalence queries.
In this sense, a small set of counterexamples is more
informative than a large set of counterexamples.

5.4.3 Other Strategy Learning Algorithms

There are some games which, despite the existence of
long transitive chains, have strategy learning algorithms
that do not meet the (p, ¢)-randomization criterion, but
still allow the covering competitive algorithm to learn
perfect strategies in polynomial time. An example of
such a strategy learning algorithm is given in the long
version of this paper. It learns evaluation functions
represented as digjunctions of predicates over state at-
tributes. It is shown there that games where this rep-
resentation 1s applicable have polynomially large speci-
fication number, and that the covering competitive al-
gorithm finds perfect strategies for these games in poly-
nomial time.

6 Computational Complexity

We briefly consider the computational complexity of
problems relevant to game learning.

We need to define games more carefully to understand
the sort of computation that can be done on them. As-
sume that the first and second player strategies are n;
and ns bits long, and that binary game outcome is given
by a boolean formula f of length polynomial in n; and
ns. A decision-problem version of game learning can
be formulated: is the game a first-player win? That
is, if game outcome is given by f(h,z), decide whether
drVz f(h,z). But this is simply the canonical Xy P-
complete decision problem QSAT, [17], so game learn-
ing is X5 P-complete. Similar problems in game theory
have been related to the complexity class £y P [14, 18].

The problem solved by the strategy learning algorithm
isin N P (a formula containing several copies of f, with
different opponents inserted, must be satisfied). Satisfy-
ing the (p, ¢)-randomization criterion is not much more
difficult: the method of almost uniform generation [12]
can be used to do this in randomized polynomial time
with an NV P oracle, as follows. Given a tolerance €, an
almost uniform generator outputs a solution y to the
given decision problem with probability u'(y), where u
is the uniform probability and (1 + ¢)7'u < u/(y) <
(1 + €)u. This can be done with an N P oracle in ran-
domized time polynomial in the input size and % [12].
We may reasonably meet the (p,q)-randomization cri-
terion by, for example, setting € = % to obtain ¢ = 1
and p = % This implies that games can be solved with
an NP oracle in expected time polynomial in Ig(|H|),

lg(|X']), and k using the covering competitive algorithm.
This result may be seen as giving a subset of problems in
Y5 P (those reducible to games with polynomially large
k) which may be solved in randomized polynomial time
with an N P oracle.

Lemma 2 showed that, using our definition of a com-
petitive algorithm, no competitive algorithm exists that
solves every game in time polynomial in Ig(|H|), Ig(|X]),
and k with worst-case strategy learning algorithms. It
is natural to ask whether there exists any type of al-
gorithm that can use worst-case strategy learning algo-
rithms to solve any game in polynomial time. As a first
step, remove the dependence on k; as described above,
game learning is then X5 P-complete. But, if there is an
algorithm that uses worst-case strategy learning algo-
rithms to solve games in time polynomial in 1g(|H|) and
lg(|X']), game learning would be in Ay P (since the strat-
egy learning algorithms could be replaced by an NP
oracle); this would yield the unlikely conclusion that
Yo P C AgP.

7 Open Questions and Future
Directions

The above result strongly suggests that games with poly-
nomial-time computable outcomes are not solvable in
time polynomial in lg(|#]|) and Ig(|X|) by any type of
competitive algorithm given worst-case strategy learn-
ing algorithms. An important open question is whether
games may be solvable in time polynomial in 1g(|H|),
lg(|X]), and k using worst-case strategy learning al-
gorithms, without violating constraints from computa-
tional complexity. If the answer is no, then any type
of competitive algorithm will require restricted games
or restricted strategy learning algorithms to succeed (as
is the case for the competitive algorithms discussed in
this paper). If the answer is yes, then the competitive
algorithms considered in this paper are restrictive; addi-
tional means of manipulating strategies offer additional
power.

The (p, q)-randomization criterion is one condition that
allows the covering competitive algorithm to learn per-
fect strategies in polynomial time. There may be other
natural restrictions on strategy learning algorithms which
also allow polynomial learnability. Specific broadly ap-
plicable strategy learning algorithms are also a clear tar-
get for study; the example mentioned in Section 5.4.3
may be seen as a first step in this direction.

For complex games, it is unlikely that natural classes
of quickly computable strategies will contain perfect
strategies. Even when perfect strategies exist, it may
be intractable to find them. Also, if specification num-
ber is large, it will be impossible to efficiently learn per-
fect strategies in a competitive framework like the one
described here. How should approximate learning be
approached in these cases? One natural idea is to seek
randomized strategies that win with at least probability
P, . Since this defines a new boolean outcome for the

game (whether or not the first player wins with proba-
bility at least P,), the original framework can be used.
One possible path to randomized strategies would con-
sider mized strategies that randomize over a set of pure
strategies, where such pure strategies come from a class
of deterministic strategies like H and X’ in this paper.
It has been shown that near-optimal mixed strategies
exist that randomize over only a small number of pure
strategies [14]. These small mixed strategies are com-
pactly representable, and the probability of a win may
be computed exactly in polynomial time for a pair of
such strategies. This may make it practical to work
with mixed strategies.

8 Conclusion

We have shown the existence of a competitive algorithm
that is able to successfully bootstrap its way to perfect
strategies for a game under fairly general conditions.
This gives some validity to the intuition behind the
competitive approach to game learning. The covering
competitive algorithm guarantees progress by ensuring
that new strategies defeat all previous strategies. Sim-
pler algorithms that fail to meet such a condition may
be unable to make rapid progress on some games.

We have provided initial results for exact learning in the
competitive approach to game learning. Future work
should be able to extend results to approximate learn-
ing, explore efficient strategy learning algorithms for in-
teresting classes of strategies, and otherwise bring the
theory closer to practical applicability.

Acknowledgments

Thanks to Mark Land, Ramamohan Paturi, and Bar-
bara Ritz for helpful discussions. Thanks to the ACISE
program at Lawrence Livermore National Laboratory
for supercomputing resources used in related empirical
work.

References

[1] Angluin, D. (1990) Negative results for equivalence
queries. Machine Learning 5:2.

[2] Anthony, M., G. Brightwell, D. Cohen, and J.
Shawe-Taylor. (1992) On Exact Specification by
Examples. COLT 92.

[3] Bshouty, N.H., R. Cleve, S. Kannan, and C. Ta-
mon. (1994) Oracles and queries that are sufficient
for exact learning. COLT 94.

[4] Chvatal, V. (1979) A greedy heuristic for the set-
covering problem. Mathematics of Operations Re-

search 4: 233-235.
[5] Cliff, D. and G. Miller. (1995) Tracking the Red

Queen: Measurements of Adaptive Progress in Co-
evolutionary Simulations. Third European Confer-
ence on Artificial Life.

[6] Epstein, S.L. (1995) Toward an Ideal Trainer. Ma-
chine Learning 15:3.

[7] Fiechter, C.-N. (1994) Efficient Reinforcement
Learning. COLT 94.

[8] Freund, Y., M. Kearns et al. (1995) Efficient Al-
gorithms for Learning to Play Repeated Games

Against Computationally Bounded Adversaries.
FOCS 36.

[9] Goldman, S.A., and M.J. Kearns. (1991) On the
Complexity of Teaching. COLT 91.

[10] Gordon, G.J. (1995) Stable Function Approxi-
mation in Dynamic Programming. Proceedings of
the Twelfth International Conference on Machine
Learning.

[11] Hillis, W.D. (1991) Co-evolving Parasites Improve
Simulated Evolution as an Optimization Proce-

dure. Artificial Life II.
[12] Jerrum, M., L. Valiant, and V. Vazirani. (1986)

Random Generation of Combinatorial Structures

from a Uniform Distribution. Theoretical Computer
Science 43:2.

[13] Kilian, J., K.J. Lang, and B.A. Pearlmutter. (1994)
Playing the Matching-Shoulders Lob-Pass Game
with Logarithmic Regret. COLT 94.

[14] Lipton, L.J. and N.E. Young. (1994) Simple Strate-
gies for Large Zero-sum Games With Applications
to Complexity Theory. STOC ’94

[15] Littman, M. (1994) Markov Games as a Frame-
work for Multi-agent Reinforcement Learning. Ma-
chine Learning: Proceedings of the Fleventh Inter-
national Conference.

[16] Maass, W. (1991) On-line Learning with an Oblivi-
ous Environment and the Power of Randomization.

COLT 91.

[17] Papadimitriou, C. (1994) Computational Complez-
ity.

[18] Papadimitriou, C. and M. Yannakakis. (1994) On
Complexity as Bounded Rationality. STOC ’94.

[19] Pell, B. (1993) Strategy Generation and Evaluation
for Meta-Game Playing. Ph.D. Thesis, University
of Cambridge.

[20] Pollack, J., A. Blair, and M. Land. (1995) Coevo-
lution of a Backgammon Player. Artificial Life V
(forthcoming).

[21] Rosin, C., and R. Belew. (1995) Finding Op-
ponents Worth Beating: Methods for Competi-
tive Co-evolution. Proceedings of the Swzth Inter-
national Conference on Genetic Algorithms.

[22] Samuel, A. (1963) Some Studies in Machine Learn-
ing Using the Game of Checkers. Computers and
Thought.

[23] Schraudolph, N., P. Dayan, and T.J. Sejnowski.
(1994) Temporal Difference Learning of Position
Evaluation in the Game of Go. Advances in Neural
Information Processing Systems 6.

[24] Sebald, A.V., and J. Schlenzig. (1994) Minimax
Design of Neural Net Controllers for Highly Un-
certain Plants. IEEFE Transactions on Neural Net-
works Jan. 1994. 5: 73-82.

[25] Sims, K. (1994) Evolving 3D Morphology and Be-
havior by Competition. Artificial Life IV

[26] Sun, Chuen-Tsai, Ying-Hong Liao, Jing-Yi Lu, and
Fu-May Zheng. (1994) Genetic Algorithm Learning
in Game Playing with Multiple Coaches. Proceed-
ings of the First IEEE Conference on Evolutionary
Computation.

[27] Tesauro, G. (1995) Temporal Difference Learning
and TD-Gammon. CACM 38:3.

[28] Walker, S., R. Lister, and T. Downs. (1994) Tem-
poral Difference, Non-determinism, and Noise: a
Case Study on the 'Othello’ Board Game. ICANN

'94. Proceedings of the International Conference on
Artificial Neural Networks.

