Abstract—This paper presents a self-localization strategy for a team of heterogeneous mobile robots including ground mobile robots of various sizes and wall-climbing robots. These robots are equipped with various visual sensors, such as miniature webcams, omnidirectional cameras, and PTZ cameras. As the core of this work, a formation of four-robot team is constructed to operate in a 3D space, e.g., moving on ground, climbing on walls and clinging to ceilings. The four robots could dynamically localize themselves asynchronously by employing cooperative vision techniques. Three of them on the ground mutually view each other and determine their relative poses with 6 degrees of freedom (DOFs). A wall-climbing robot, which significantly extends the work space of the robot team to 3D, is at a vantage point (e.g., on the ceiling) such that it can see all the three teammates, thus determining its own location and orientation. The four-robot formation theory and algorithms are presented, and experimental results with both simulated and real image data are provided to demonstrate the feasibility of this formation. Two 3D localization and control strategies are designed for applications such as search & rescue and surveillance in 3D urban environments where robots must be deployed in a full 3D space.

Index terms: Multi-robot system, climbing robot, localization

I. INTRODUCTION

A. Motivation

The focus of robotics research has evolved significantly over the last several decades—the researchers’ attention has turned from the traditional industry manipulators toward mobile robots, and more recently from the control of individual robot to the coordination of multiple robots. A great amount of research on mobile robots has been published in literature. However, most of these robots work in a 2D space or in a strictly restricted 3D space. In [1] [2] [3], a new generation of wall-climbing robot is presented and several real robot prototypes are implemented, which transform the present 2D world of mobile rovers into a new 3D universe.

On the other hand, multi-robot cooperation has become another focus of research, which aims at realizing tasks that cannot be fulfilled by a single robot. In this case, multiple robots need to be deployed, and the localization among them becomes an important issue.

A variety of sensors and technologies have been developed for robot localization, however, most of these localization methods are only applicable to robots in a 2D work space. In robotic applications, especially in urban scenarios, more and more tasks require robots to work in a 3D work space and to achieve the same level of localization ability as in 2D space. Therefore, in this paper, we introduce a robot team formation that is composed of ground robots and wall-climbing robots, working in a 3D space. The robots could localize themselves and among each other using cooperative vision strategies proposed in this paper.

B. Related Work

There is a large body of literature in camera pose estimation using N-point algorithms. In [4], the authors tracked the history of camera pose estimation problem using 3 points. A more complete survey of arbitrary N-point algorithms can be found in [5]. It should be noticed that these algorithms work well in ideal case only, which would require obvious feature points in the environment and need either point tracking or points correspondences matching.

One class of the major approaches in robot localization, the absolute localization, aims at localizing the robot in an known or sensed environment. A good survey can be found in [6], which also introduced the Monte Carlo localization method. The other class of approaches, the relative localization, is burgeoning to be a hot topic in the past few years. Researchers in this area aim at making robots work in unknown and hostile environments without requiring the robots to obtain maps by long time learning. These works are mostly implemented among multiple robots. In [7], the authors have proposed a system that dynamically localizes two robots with omnidirectional cameras by tracking the cylindrical bodies of each other to calibrate between them when moving on a 2D plane. A thorough error analysis in 3D moving target tracking is also carried out by the authors. In [8], the authors proposed a solution of self-localization among three robots which requires mutual visibility. These works partially solved the problem of mutual localization of multiple robots. However, the work space of the robots is still restricted in 2D because of the limitation of vertical view angles of the catadioptric cameras used.

C. Overview of Our Work

This paper presents strategies for a formation of heterogeneous mobile robots that coordinate actions via self-
localization in a four-robot configuration. The configuration includes 3 ground-traversing robots and one climbing robot. The system is ideally planned for tasks in urban environments where the overhead view of the wall-climbing robot can be exploited. The wall-climbing robot expands the localization to three-dimensional unknown space because the robot is at a vantage point where it has a direct line of sight to the other three team members on the ground. It is noted that the configuration is a rather general one in that the three ground robots do not need to traverse on the same planar surface; nor do they need to see the overhead wall-climbing robot (Fig. 1).

The basic steps of the algorithm are follows. First, the formation of three ground robots is calculated with the algorithm in [8], up to a translation scale. The overhead camera on a wall-climbing robot can see them; hence correspondences of their 2D images in the view of the overhead camera and their 3D locations are built. Second, the overhead camera tracks the motion of the three-robot formation, therefore its own pose is determined by solving a linear equation system after obtaining 6 correspondences of 2D-3D points. As a bonus, the motion information of the ground robots provides a good estimation of the translational scale. In this way, the 6 DOF poses of all the four robots are determined without assuming any 3D structure in the space. The robots’ self-localization is performed without referring to any landmarks in the environment except the robots themselves. A wall-climbing robot [1] [2] [3] is included in the robot team to explore the 3D work space for various tasks such as object tracking, environmental monitoring, etc.

This paper is organized as follows. In Section II, the problem formation of four-robot localization is introduced. In section III, the two localization strategies are discussed to localize the wall-climbing robot. Robot motion planning methods are provided to give the overhead camera (on the wall-climbing robot) sufficient number of points for self-localization. In section IV, simulation and real experimental results are presented. Finally, conclusions and future research works are discussed in Section V.

II. PROBLEM FORMATION

A. System Composition

Our system is composed of four robots, each being mounted with a camera; an illustration is shown in Fig. 1. The three robots mounted with the cameras C_1, C_2, C_3 are on the ground, which do not have to be on the same plane. The robot equipped with the camera C is a wall-climbing robot which can move around or stay on the ceiling. The cameras C_2 and C_3 are catadioptric omnidirectional cameras, which could view 360 degrees horizontally and −12 to 32 degrees vertically, therefore they can see each other under most of their formations. The camera C_1 is a Pan-Tilt-Zoom (PTZ) camera whose view angle could vary from 85 degrees to 15 degrees by its optical zooming. These three cameras are mounted on ground robots. The PTZ camera is used to monitor the two robots in front of it with both flexibility in Fields of View (FOVs) and image resolutions by panning, tilting and zooming.

The camera C is a small wireless perspective camera with a view angle of 52 degrees. It could be mounted on the wall-climbing robot with an additional weight of 50g. The moving direction of the robot team is the PTZ camera viewed direction (to the left of the figure), in which the two omni-cameras could establish stereo vision for navigation and the PTZ camera could look to the moving direction and zoom in when it is necessary to find details in observation.

B. Problem Formation

Because the cameras are independent to the robots, their intrinsic parameters, including their focal lengths, image centers and aspect ratios, are pre-calibrated. The visibility relations among cameras are as follows. The cameras C_1, C_2 and C_3 could mutually see each other, whereas the camera C could see all the three cameras C_1, C_2 and C_3. Note that we do not require any of the three ground robots to be able to see the wall-climbing robot. The problem formation model is decomposed into two parts: the localization of the three ground robots and the pose estimation of the wall-climbing robot.

1) Three ground robots localization: Because the cameras C_1, C_2 and C_3 mutually view each other, we use the method proposed in [8] to estimate their relative poses (locations and orientations). The translation vector and the rotation matrix of the camera C_j with respect to camera C_i are defined as \mathbf{T}_j and \mathbf{R}_j ($i = 1, 2, 3$ and $j = 1, 2, 3, i \neq j$), respectively. Because the focal length of each camera is already known, this translation can be represented in a normalized form (i.e. image form) $\mathbf{u}_{ij} = (x_{ij}, y_{ij}, f_i)^T$, where f_i is the focal length of the camera C_i, and (x_{ij}, y_{ij}) is the position of the camera C_j in the camera C_i’s image coordinate system. Once we have \mathbf{u}_{ij} with mutual visibility among the three “ground” cameras, the “relative” translations \mathbf{T}_j and rotations \mathbf{R}_j could be calculated using the method proposed in [8]. A summary of this method is provided in Section II. C for completeness.

2) Wall-climbing robot localization: Now that we could calculate the formation among the robots with the camera C_1, C_2, C_3 in real-time, we hope to find the pose (including the translation vector and the rotation matrix) of the camera

![Fig. 1. Four-Robot formation in 3D circumstance](image-url)
C with respect to one of the three ground cameras. Suppose the image coordinate vector of the camera \(C_i \) viewed by the camera \(C \) is \((x_i, y_i)\), and the focal length of the camera \(C \) is \(f \), our task is to find the translation vector \(T_i \) and the rotation matrix \(R_{ij} \) in the camera coordinate system of the camera \(C_i \), where \(i = 1, 2, 3 \) can be any of the three camera. Our approach to this 3D localization is discussed in detail in section III.

C. Prerequisite localization component

In this sub-section, we will briefly review the solution proposed in [8] in solving the localization problem among the three camera \(C_1, C_2 \) and \(C_3 \) as a basis for 3D localization strategies.

As shown in Fig. 3, because all the solutions for translational vectors are up to a scale, we assume that the absolute length between cameras \(C_i \) and \(C_j \) is known as \(L_{ij} \). For calculation, we assume that the angle between \(i \)th and \(k \)th vector is \(\psi_i \), By the Cosine Theorem, we have

\[
\begin{align*}
1T_2 &= L_{12}\hat{u}_{12} = \frac{\sin(\cos^{-1}(\hat{u}_{21} \cdot \hat{u}_{23}))}{\sin(\cos^{-1}(\hat{u}_{13} \cdot \hat{u}_{12}))} \hat{u}_{12} \\
1T_3 &= L_{13}\hat{u}_{13} = \frac{\sin(\cos^{-1}(\hat{u}_{13} \cdot \hat{u}_{12}))}{\sin(\cos^{-1}(\hat{u}_{13} \cdot \hat{u}_{12}))} \hat{u}_{13}
\end{align*}
\]

(1)

Note that the vectors \(i \)th and \(j \)th are of the same length but of opposite directions, therefore we have the following equation set

\[
\begin{align*}
-1T_2 &= 1R_{2} \cdot T_1 \\
1T_3 &= 1^{-1}T_2 = 1R_2 \cdot T_3 \\
-1T_3 &= 1R_3 \cdot T_1 \\
-1T_2 &= 1R_3 \cdot T_2 = 1R_3 \cdot T_2
\end{align*}
\]

(2)

Now that all the vectors \(i \)th are up to the same scale, each rotation matrix \(R \) could be normalized to the form of

\[
R_{ai} = b_i \quad i \in [1, 2]
\]

(3)

whose solution is

\[
\min_R \sum_i \|R_{ai} - b_i\|
\]

(4)

which can be analytically solved by

\[
R = (M^TM)^{-\frac{1}{2}}M^t \quad \text{where} \quad M = \sum_i a_i \cdot (b_i^T)
\]

(5)

With this algorithm, the relative poses of the cameras \(C_1, C_2 \) and \(C_3 \) could be calculated up to the same scale in real-time if they could mutually view each other.

III. 3D LOCALIZATION STRATEGIES

Now we have the relative poses of cameras \(C_1, C_2 \) and \(C_3 \) at any time, the next task is to estimate the pose of camera \(C \).

A. Definition and Analysis

We define the intrinsic parameters of camera \(C \) as follows: \(f \) is the effective focal length; \((x_i, y_i)\) is the position of the camera \(C_i (i = 1, 2, 3, \text{ same below}) \) in the camera \(C \)’s image coordinate system. \((X_W, Y_W, Z_W)^T\) is the world coordinates of the camera \(C_i \), all of which are determined (Section II C) in a relative coordinate system defined with the three ground robots (up to a scale). To clarify our equations, we define \((X_W, Y_W, Z_W)^T\) as the origin of the world coordinate system, \(i.e., (0, 0, 0)^T\). We also define \(R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}\)

as the rotation matrix of the camera \(C \), and \(T = (T_x, T_y, T_z)^T\) as its position, both with respect to the camera \(C_1 \). Now our task is to find the pose of the camera \(C \), i.e., to find \(R \) and \(T \).

Using the well-known perspective camera model, we have

\[
\begin{align*}
\frac{y}{f} & \left(r_{31}X_W^i + r_{32}Y_W^i + r_{33}Z_W^i + T_z \right) = \\
\frac{y}{f} & \left(r_{11}X_W^i + r_{12}Y_W^i + r_{13}Z_W^i + T_z \right)
\end{align*}
\]

(6)

Using the known perspective camera model, we have

\[
\begin{align*}
X_W &= \frac{r_{12}Y_W - r_{13}Z_W + T_z}{r_{22}Y_W - r_{23}Z_W + T_z} \\
Y_W &= \frac{r_{21}X_W - r_{23}Z_W + T_z}{r_{31}X_W - r_{33}Z_W + T_z}
\end{align*}
\]

(6)

where \(i = 1, 2, 3 \). This will provide 6 independent linear equations for 12 unknown variables of the rotation and translation components. Note that the rotation matrix only has three degrees of freedom, even with 9 elements. Therefore, there should be a solution using three known points seen by the camera \(C \) (i.e., the three robot locations) given that the rotation and translation parameters only have six degrees of freedom. However, there could be up to 4 valid solutions in this system [4]; in addition, the localization is up to a scale. This leads us to find out an alternative solution by considering the mobility of the mobile robot team and to further determine the scale of the translations. If we make more observation on these three-robot-formations, \(i.e., \) more equations are introduced, the linear system can be solved. As a result, two strategies of solving the localization problem by moving the ground robots are proposed.

B. Concurrent Moving Strategy

As is shown in Fig. 3, the behavior of the dynamic three-ground-robot formation is composed of three steps by two movements in one localization cycle of the four-robot formation. In each localization cycle, the wall-climbing robot with the camera \(C \) finishes one self-localization.

Within each localization cycle, the camera \(C \) will keep itself stationary on the ceiling. Meanwhile, the other three (ground) robots with the camera \(C_1, C_2 \) and \(C_3 \) go through the localization in three steps. Throughout the cycle, the first
camera C_1 remains in its initial position. When the cameras C_2 and C_3 are in their initial positions, the three ground robots finish one self-localization in the reference coordinate system of the stationary camera C_1. During this step, the overhead camera C records and identifies the image coordinates of all the three robots (cameras). Then we move the cameras C_2 and C_3 together twice (move 1 and move 2, consequently step 2 and step 3), with the feedback of the camera C to make sure they are within its field of view (FOV). Each time when the three cameras are in a new three-robot formation, a self-localization with respect to C_1 is performed again. It is repeated in steps 2 and 3.

After the three localization steps, we obtain 7 ($=3+2+2$) known 3D locations of the moving robots. In addition, the translation scale can be roughly determined by the motion information of the two ground robots. This leads to a linear equation system in the form of Eq. 6 with 14 equations instead. With the least square method, we can determine the pose of the camera C in a linear manner, with absolute scales, and in real-time.

After one localization cycle is finished, the wall-climbing robot with the camera C can move again on the condition that the three ground robots are within its FOV.

C. Sequential Moving Strategy

Theoretically, concurrent moving strategy can perfectly finish self-localization of the robot team. However, we also notice that with such a moving strategy, the robot team has to move in a peristalsis fashion, which looks not very fluent. Consequently, we design another moving strategy for such localization called the sequential moving strategy that moves robots in turn.

Once again, our localization strategy will be composed of global localization cycles. In each cycle, as shown in Fig. 4, the three robots are in their original positions C_1, C_2, and C_3, and a mutual localization is conducted among them. Then, in the second step, instead of moving two robots, we only move C_2 to a new position C_2' within C’s FOV. Another mutual localization among the three robots is performed and camera C will record all these positions. Alternatively, in the next two steps, we will move one robot each time (C_2 then C_1) and do self-calibration among three ground robots with respect to the camera coordinate of the robot which was moved earliest. By utilizing the perspective camera model, these relative positions represented in different camera coordinate systems (due to motion) could be easily transformed to the relative positions with respect to the initial pose of the camera C_1. Furthermore, as in the concurrent moving strategies, the translation scale can be estimated with the motion information of the ground robots. As such, camera C is able to localize itself by obtaining 6 known 3D points and establish 12 equations in the form of Eq. 6 for 12 unknowns.

Compared with concurrent moving strategy, the sequential moving strategy has two advantages. (1) The localization cycle could start from any stage of the movements without having to start from the first stage. (2) The sequential moving strategy is more efficient since only one movement per robot is needed. Since this moving strategy only moves one camera with two reference points fixed each time, more robust and accurate results could be obtained from it than from the concurrent moving strategy with only one fixed reference point. Experimental results will be shown in the next section.

The two localization strategies seem to restrict free movement of mobile robots at the first glance. However, it is quite practical and could be implemented in near-realtime. In the concurrent moving strategy, the only requirement is that both the wall-climbing robot and one of the ground mobile robots (i.e., the reference robot) move to suitable locations and pause for a while, while the other two ground robots keep on moving.
Three synchronized snapshots of all four cameras will be sufficient to determine their relative poses. Similar observation can be made in the sequential moving strategy.

IV. EXPERIMENTAL RESULTS

A. Simulations

The objective of our simulation is to verify the correctness, feasibility and robustness of our algorithms/strategies. We built a virtual environment using matlab for simulation purpose. The simulation is conducted in the following two steps.

Step 1. Constructing the models of a perspective camera C, two catadioptric cameras C2, C3, and a PTZ camera C1 (at wide angle end), by defining their intrinsic parameters, i.e., effective focal lengths, aspect ratios, image centers (which is extremely important for catadioptric cameras), and image resolutions (an important issue for robustness test). The parameters used are the nominal values from the real camera manuals.

Step 2. After constructing these camera models, we build an 3D experimental environment. The ground is modeled as a hyperboloid surface (to simulate 3D orientations of the three ground robots) and the ceiling as a sinusoid curvature (for the same reason for the wall-climbing robot). The radius of the curvature of the hyperboloid ground is 8 meters. The period of the sinusoid ceiling is 10 meters with a magnitude of 0.25 meters. The purpose of designing such a surface is to provide a “general” 3D environment. The distance between the ceiling and the ground is 3.5 meters. Both moving strategies are applied to the robot team of four. The distance of each movement of the robots obeys an isotropic Gaussian distribution of $N(0.8, 0.2)$ meters. The initial formation of the three robots is a triangle with a baseline of 2 meters and other two edges of 1.5 meters. The overhead camera (on the wall-climbing robot) is right above the midpoint of the base line. The orientation of each camera parallelly embeds in the tangent plane at their attaching point of the surface. Gaussian noises are added to test the robustness of our approach. The position of the camera C1 in the camera Cj’s image coordinate system is added by an error of $N(0, 2)$ in units of pixels and it uniformly distributes in isotropic directions. Simulation results are shown in Table I. The measurements of errors in locations are the Euclidian distances between localized positions and real positions (in cm), and the errors in angles (in degrees) are the mean of errors of the yaw, pitch and tilt angles of each camera. In the table, the final locations (T) and orientations (R) of each localization cycle are shown for both the concurrent and the sequential moving strategies. Simulation results indicate that the two strategies produce the same level of accuracy in localization. The sequential strategy has stabler performance than the concurrent strategy.

B. Real Experiments

Our experiments are conducted with the following devices (Fig. 5(a)): (1) Three ground robots: One ActivMedia Pioneer II robot and two ActivMedia Pioneer III robots; (2) A climbing robot: City-Climber as reported in [1] and [3]. (3) A perspective camera: SPUD 975T wireless camera by Videocomm Tech. (4) Two catadioptric cameras: Optical part – D40 by RemoteReality Sensor – Dragonfly by PointGrey research; and (5) A PTZ camera: C50i by Canon Inc. These cameras are calibrated by the calibration tool box in [9]. The intrinsic parameters of these cameras are very close to those in their respective product manuals (used in simulation).

For accurate measurement purpose, we detach the cameras from the robots. The experiment is conducted with cameras only. The cameras in each image are calculated by thresholding under human guidance.

The computation of localization algorithm can be finished real timely. (Solving the transformations and the linear equation system takes less than 2ms in matlab.) Image segmentation using threshold in 24 bit color and the calculation of the COM of robot marker space take less than 12ms on a 640 × 480 image in Visual C++. The computations are conducted on a personal computer. Experimental results are shown in Table II; only position accuracy information are provided in real experiments due to the lack of the ground truth data for orientations. However, the estimated rotation parameters solved by the two strategies are very close to each other. Results of translation parameters show that the sequential strategy produces more accurate results than the concurrent strategy does. The errors in real experiment are one magnitude greater than those in simulation. These errors could result from the following factors: sizes of the calibration targets (the robots), lens distortion, and the fact that the three ground robots are on a flat plane, which is the case that camera calibration usually needs to avoid.

<table>
<thead>
<tr>
<th>Camera #</th>
<th>Real R</th>
<th>Estimated R</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(90, 0, 0)</td>
<td>(88.65,1.07,1.55)</td>
<td>1.31</td>
</tr>
<tr>
<td>C1 (ref)</td>
<td>(0, 0, 0)</td>
<td>(0, 0, 0)</td>
<td>0</td>
</tr>
<tr>
<td>C2 (final R)</td>
<td>(-0.22,0.39,0.20)</td>
<td>(-2.24,-3.07,2.46)</td>
<td>2.58</td>
</tr>
<tr>
<td>C3 (final R)</td>
<td>(-0.21,0.47,-0.50)</td>
<td>(-1.29,-0.37,1.42)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

TABLE I
SIMULATION RESULTS
V. Conclusions and Discussions

In this paper, we have proposed an approach to self-localization among four robots in 3D space. Two dynamic robot-team formation strategies are presented to obtain 3D poses of all the four robots with analytical solutions and absolute translation scales. Both of them work robustly and accurately in simulation; acceptable results are produced in experiments with real imagery data. Our experiments indicate that real-time localization among multiple robots is feasible through inexpensive cameras in unknown 3D space.

The main contributions of this paper lie in three points. First, multi-robot localization is realized in a 3D space with various cameras - perspective cameras, PTZ cameras and catadioptric cameras. Second, in the four-robot team, the three ground robots do not have to see the wall-climbing robot over-looking them, thus loosening the constraints of mutual visibility as in [8]. Third, the three robot localization solution in [8] is up to a scale, but no information about absolute distances is obtained. In our work, the localization process is implemented by multiple movements, which give us enough information to calculate the absolute translations in the robot formation with the robot movement information.

In real robotic applications, real time is always one of the key issues to guarantee the success of the missions. In our current experiments, the localization algorithm can achieve near real-time performance. However, the localization of the overhead camera needs to go through several moving stages of the three on-ground robots. To achieve better real time property, analytical algorithm solving the problem in one step is desired. This is our ongoing research, the accomplishment of which will lead to a more efficient way of the localization among multi-robot in 3D space.

TABLE II

<table>
<thead>
<tr>
<th>Camera #</th>
<th>Real T</th>
<th>Estimated T</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(23.7,75.2,295.5)</td>
<td>(35.4,60.6,302.3)</td>
<td>19.9</td>
</tr>
<tr>
<td>C_1 (ref)</td>
<td>(-34.4,66.8,2.9)</td>
<td>(-34.4,66.8,2.9)</td>
<td>0</td>
</tr>
<tr>
<td>C_2 (final T)</td>
<td>(159.8,17.6,2.4)</td>
<td>(175.5,29.5,14.0)</td>
<td>23.4</td>
</tr>
<tr>
<td>C_3 (final T)</td>
<td>(161.1,180.4,2.4)</td>
<td>(173.4,168.9,7.9)</td>
<td>17.7</td>
</tr>
<tr>
<td>Sequential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(23.7,75.2,295.5)</td>
<td>(29.8,69.5,298.6)</td>
<td>8.9</td>
</tr>
<tr>
<td>C_1 (final T)</td>
<td>(57.2,61.3,2.9)</td>
<td>(62.3,57.9,4.4)</td>
<td>6.3</td>
</tr>
<tr>
<td>C_2 (final T)</td>
<td>(127.6,15.9,2.4)</td>
<td>(123.6,19.2,5.0)</td>
<td>5.8</td>
</tr>
<tr>
<td>C_3 (final T)</td>
<td>(130.1,174.3,2.4)</td>
<td>(137.0,169.2,4.4)</td>
<td>8.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Camera #</th>
<th>Real R</th>
<th>Estimated R</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>(10.2,7.6,92.3)</td>
<td>—</td>
</tr>
<tr>
<td>C_1 (ref)</td>
<td>—</td>
<td>(8.7,-13.5,-4.6)</td>
<td>—</td>
</tr>
<tr>
<td>C_2 (final T)</td>
<td>—</td>
<td>(14.2,9.1,-7.0)</td>
<td>—</td>
</tr>
<tr>
<td>C_3 (final T)</td>
<td>—</td>
<td>(13.5,-6.2,7.9)</td>
<td>—</td>
</tr>
<tr>
<td>Sequential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>(12.9,8.6,90.5)</td>
<td>—</td>
</tr>
<tr>
<td>C_1 (final T)</td>
<td>—</td>
<td>(9.6,17.7,-5.8)</td>
<td>—</td>
</tr>
<tr>
<td>C_2 (final T)</td>
<td>—</td>
<td>(15.4,9.3,-8.1)</td>
<td>—</td>
</tr>
<tr>
<td>C_3 (final T)</td>
<td>—</td>
<td>(5.1,-2.7,2.0)</td>
<td>—</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

This work was supported in part by the U.S. Army Research Office under Grant W911NF-05-1-0011 and U.S. National Science Foundation under Grant No. CNS-0424539.

REFERENCES