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Abstract— Coordination is an essential characteristic of
any task-achieving multi-robot system (MRS), whether it is
accomplished through an explicit or implicit coordination
mechanism. There is currently little formal work addressing
how various MRS coordination mechanisms are related, how
appropriate they are for a given task, what capabilities they
require of the robots, and what level of performance they
can be expected to provide. Given a MRS composed of
homogeneous robots, we present a method for automated
controller construction such that the resulting controller
makes use of internal state and no explicit inter-robot
communication, yet is still capable of correctly executing
a given task. Understanding the capabilities and limitations
of a MRS composed of robots not capable of inter-robot
communication contributes to the understanding of when
and why inter-robot communication becomes necessary and
when internal state alone is sufficient to achieve the desired
coordination. We validate our method in a multi-robot
construction domain.

I. INTRODUCTION AND MOTIVATION

Coordination is an essential characteristic of any task-
achieving multi-robot system (MRS). The nature of the
coordination may take many forms, seemingly limited
only by the creativity of the designer. Explicit coordination
mechanisms make use of internal state maintained by
individual robots and explicit inter-robot communication,
often involving centralized or hierarchical control. Alter-
native approaches, involving implicit coordination, make
use of fortuitous structure in the environment and its
synergistic relationship to the task definition and the
robots’ sensing, control, and mobility characteristics to
produce a different class of coordination techniques, often
categorized by terms such as emergent, self-organized, or
stigmergic.

From the perspective of the designer, the coordination
mechanism employed in a given task domain is often
heavily influenced by personal preference and less so by
a formal understanding of why one is more appropriate
than another or how the various coordination mechanisms
are related. There is little formal work addressing the
question of rationally choosing the most appropriate MRS
coordination mechanism for a given task domain and per-
formance requirements. Furthermore, there is little work
on the more fundamental question of how various classes

of coordination are related.
To provide insight into these questions, we are develop-

ing a coordination formalism which provides a framework
for precisely defining and reasoning about the intertwined
entities intrinsically involved in any task-achieving multi-
robot system – the task environment, task definition, and
the capabilities of the robots themselves. Our approach
is novel in that it expresses a principled effort to un-
derstand the relationship between explicit coordination
mechanisms, such as those primarily relying on the use in-
ternal state and direct communication, and more emergent
implicit coordination mechanisms, which tend to make use
of environment and task structure and more indirect forms
of communication.

Our initial investigations have centered on multi-robot
systems composed of robots equipped with internal state
but lacking the capability for explicit, direct inter-robot
communication. A formal understanding of the capabil-
ities and limitations of such a system contributes to the
understanding of when and why internal state alone is suf-
ficient to achieve the desired coordination and when inter-
robot communication becomes necessary. Furthermore, we
hope this work will help elucidate the currently ongoing
discussions regarding the meaning behind labels such as
team robotics vs. swarm robotics, etc.

Toward this end, we present an automated multi-robot
controller generation algorithm. The generated controller,
when run by all robots in a homogeneous multi-robot sys-
tem, will correctly execute a given task. We demonstrate
our formalism in a multi-robot construction domain where
we are able to provide specific task instances accompanied
by formal explanations of the suitability of the use of
internal state.

This paper is organized as follows. In Section II we
provide the relevant related work. In Section III we
provide formal definitions of the task environment, task
definition, and robot characteristics used in the formalism.
In Section IV we present an algorithm to construct the
controller of each robot in a MRS such that a given
task is correctly executed. In Section V we demonstrate
and validate the formalism in a Multi-Robot Construction
domain. In Section VI we draw conclusions and discuss
future work.



II. RELATED WORK

This section summarizes some of the most relevant
related work involving characterization and analysis of co-
ordination in multi-robot systems. The work of Parker [14]
discusses the trade-offs of local versus global information
for coordination in multi-robot systems. Beckers et al. [2]
present a coordination mechanism in a multi-robot object
clustering domain. Matarić [12] presents work on group
coordination in multi-robot systems using a collection of
simple basis behaviors. The information invariants work of
Donald [5] addresses the problem of determining the infor-
mation requirements to perform robot tasks and means in
which this information may be acquired. Dudek et al. [6]
present a taxonomy which classifies multi-robot systems
based on communication and computational capabilities.
In a clustering domain, Martinoli et al. [11] demonstrate
how the collective behavior of a group of mobile robots
can be accurately studied using a simple probabilistic
model. They show how the results of the model are
descriptive of the results obtained through experiments
with real robots and in sensor-based simulations. Balch
[1] presents hierarchical social entropy, an information
theoretic method of analysis used to determine the extent
of diversity among robots in multi-robot systems. Gold-
berg and Matarić [8] precisely define the foraging task for
multi-robot systems and provide a collection of general
distributed behavior-based coordination algorithms and
their empirical evaluation. Gerkey and Matarić [7] present
a formalism for the analysis of task allocation in multi-
robot systems with an emphasis on explicit coordination
mechanisms. Lerman and Galstyan [10] present a mathe-
matical model of the dynamics of collective behavior in a
multi-robot adaptive task allocation domain.

The domain in which we validate our approach is multi-
robot construction. Related work in this area includes the
work of Bonabeau et al. [4] which uses a rule-based model
in the construction of biologically-plausible nest structures
similar to those of some wasp species. Bonabeau et al. [3]
investigate the use of genetic algorithms to generate such
rules used in the construction of biologically-plausible
structures and explores the relationship between the space
of rules and resulting structures. In the area of construction
by physical robots, Melhuish et al. [13] demonstrate how
a group of minimalist robots can construct defensive walls
using biologically-inspired templates. Wawerla et al. [15]
present work on the comparison of different coordination
strategies in the construction of simple 2D structures using
a group of mobile robots. Jones and Matarić [9] present
a method by which to automatically generate controllers
for rule-based agents using local sensing and control in
an intelligent self-assembly domain.

III. DEFINITIONS AND NOTATION

In this section we formally define the intertwined en-
tities intrinsically involved in any task-achieving multi-
robot system – the task environment, task definition, and
the capabilities of the robots themselves, including control,
sensing, and maintenance of internal state.

A. Task Environment

The task environment is the world in which the multi-
robot system is expected to perform a defined task. The
environment state, s, at any given time is an element of the
finite set S of all possible states. An action, a, performed
in the environment by a robot is drawn from the finite set
A of all possible actions. An environment is defined by a
state transition function sj = F (si, a), which states that
when action a ∈ A is executed in state si ∈ S, the next
state will be sj ∈ S. In this work, we assume the state
can transition only as the result of an action performed by
a robot.

B. Task Definition

We define a task, T, assumed to be Markovian, as a set
of n ordered environment states, Ts = {s1, ..., sn} which
must be progressed through in sequence. From here on,
the use of the word state refers to task state. An action a is
called a task action for state si, denoted by At(si) ∈ A, if
si+1 = F (si, a). A task T is said to be executed correctly
if and only if for each task state si ∈ Ts any executed
action a falls into one of the two following categories: a =
At(si) or si = F (si, a). This means that all performed
actions are either task actions or are actions which do not
result in a task state transition.

C. Observations

An observation made by an individual robot consists of
accessible information external to the robot and formally
represents a subset of the task state. The content and
properties of an observation are dependent on the specific
sensing properties of the robot. The finite set of all possi-
ble observations is denoted as X. Since a given observation
may occur in multiple states, for notational convenience
we use xs to mean the observation x as made in state
s. An observation x with no sub-script, unless otherwise
noted, refers to the observation x as made in any state.

In state s, the function G(s) ⊆ X returns the set of all
observations which can be made in s. An observation x
is called unique if and only if there exists only one state
s for which x ∈ G(s). The observation at the physical
location where the task action of state s is to be executed
is denoted by Y (s) ∈ G(s).



D. Robot Characterization

A robot’s internal state is denoted by m. The finite
set of all possible internal state values is denoted by
M. A robot’s observation, x, at any given time is an
element of X. Two functions define a robot’s action in the
environment, known collectively as the robot’s controller.
The deterministic action function a = B(x, m) specifies
the robot’s action, a∈A, given its current observation is x
and its internal state is m. The internal state transition
function m′ = L(x, m, a) is a deterministic function
specifying the robot’s next internal state value given its
current observation x, its current internal state m, and the
action it is executing a.

A value of “·” for any parameter in the B or L functions
signifies the set of all possible values for that parameter
(i.e., “don’t care”). For example, the rule a = B(x, ·)
specifies that if a robot makes observation x, it will
perform action a regardless of the current internal state
value.

IV. BUILDING A SATISFICING CONTROLLER

We now describe a method by which a controller using
internal state can be automatically constructed such that a
given task is correctly executed. We call such a controller
satisficing. Properly executing a task in a multi-robot
system has additional challenges from doing so in a single
robot system. It can never be assumed that a particular
robot will or will not make a certain observation, as it
could be the case that a robot is completely unaware
of the progress of the task that is resulting from the
actions of other robots. Formally, from the perspective of
an individual robot, the task environment is highly non-
stationary.

A satisficing controller must satisfy two conditions.
First, for all si ∈ Ts, the action function must specify
a rule of the form At(si) = B(Y (si), m) where m ∈ M .
Second, if there exists an observation x ∈ G(si) such that
x = Y (sj) and i < j, the internal state value must be
transitioned as the result of some observation which is
guaranteed to be made after all observations of xsi

and
prior to the final observation of Y (sj). The procedure
in Figure 1 presents an algorithm which constructs a
satisficing controller based on the satisfaction of these two
conditions.

If there exists a state sk ∈ Ts, k > j for which x ∈
G(sk) we note that since the environment is non-stationary
from the perspective of the individual robot, internal state
alone is not sufficient to distinguish xsj

from xsk
and is

therefore not sufficient to guarantee correct task execution
in cases where xsj

= Y (sj). Assuming internal state is
sufficient, the worst case in terms of necessary internal
state values is ‖Ts‖ − 1. The best case is that no internal
state is necessary, which occurs if for all si ∈ Ts the
observation Y (si) is unique.

(1) procedure Build Controller()
(2) m = 0
(3) B ← {}
(4) L ← {}
(5) LastObsState = 0
(6) for i = 1 to ‖Ts‖ do
(7) if ∃sjs.t.LastObsState < j < i and

Y (si) ∈ G(sj) then
(8) m′ = m + 1
(9) if ∃x ∈ (G(si)− Y (si)) s.t.

@s ≥ LastObsState : x ∈ G(s) then
(10) LastObsState = i
(11) L ← L

S

{m′ = L(x,m,·)}
(12) else
(13) LastObsState = i - 1
(14) L ← L

S

{m′ = L(Y (si−1),m,At(si−1))}
(15) B ← B - {At(si−1) = B(Y(si−1),·)}
(16) B ← B

S

{At(si−1) = B(Y(si−1),m)}
(17) endif
(18) m = m′

(19) endif
(20) B ← B

S

{At(si) = B(Y(si),m)}
(21) endfor
(22) end procedure Build Controller

Fig. 1. Procedure for building a satisficing controller.

V. VALIDATION: COORDINATION IN MULTI-ROBOT
CONSTRUCTION

We experimentally demonstrate and validate our ap-
proach to the design of a satisficing controller in a multi-
robot construction task. The construction task requires the
placement of a series of square colored bricks, 0.5 meters
on a side, into a desired 2D planar structure in a specified
sequence. For all examples used in this section, a brick’s
color is denoted by the letters R, G, B, and Y which stand
for Red, Green, Blue, and Yellow, respectively. The
construction task starts with a seed structure, which is a
small number of initially placed bricks forming a core
structure.

Experimental demonstration was performed using
Player and the Stage simulation environment. Player
(Gerkey et al. 2001) is a server that connects robots,
sensors, and control programs over the network. Stage
(Vaughan 2000) simulates a set of Player devices. To-
gether, the two represent a high-fidelity simulation tool
for individual robots and robot teams which has been
validated on a collection of real-world robot experiments
using Player control programs transferred directly to phys-
ical Pioneer 2DX mobile robots.

Our construction task is conducted in a circular arena
of approximately 315 square meters using 6 robots. The
robots are realistic models of the ActivMedia Pioneer 2DX
mobile robot. Each robot, approximately 30 cm in diame-
ter, is equipped with a differential drive, a forward-facing
180 degree scanning laser rangefinder, and a forward-



Fig. 2. A screenshot from the Stage simulation environment populated
3 bricks and 6 robots performing the construction task.

looking color camera with a 60-degree field-of-view and a
color blob detection system. The bricks are taller than the
robot’s sensors, so the robots can only sense the bricks on
the periphery of the structure. Figure 2 shows a screenshot
of the simulation environment while the construction task
is being performed.

A. Definition of the Construction Task

We define the environment state for the construction
task as being a specific spatial configuration of bricks;
therefore, a construction task is defined as a desired
sequence of brick configurations – a specific construction
sequence. The actions we are interested in are the place-
ment of individual bricks to the growing structure; we
do not consider construction tasks in which robots may
remove bricks from the structure nor those in which sub-
structures consisting of multiple bricks may be connected
together. Other actions performed by the robots, such as
moving through the environment, do not affect task state.
Table I shows a set of environment states defining the
example construction task that we will use throughout this
section.

B. Observations in the Construction Task

Since the content of an observation is dependent on
a robot’s sensing capabilities, an observation in the con-
struction domain is the spatial configuration and color of
bricks in the field-of-view of the robot’s laser rangefinder
and color camera.

There are two general categories of observations that
can be made. The first is two adjacent, aligned bricks.

Observations in G(s2)

<FLUSH G B>
*<FLUSH B G>
<CORNER G B>
<FLUSH R G>
<FLUSH B R>

TABLE II
ALL OBSERVATIONS IN G(s2) FROM TABLE I. THE OBSERVATION

Y (s2) IS MARKED BY A “*”.

Such an observation would be made, for example, if in
state s1 in Table I, a robot were positioned above and
oriented toward the surface of the structure made up by
the Red and Blue bricks. Such an observation is denoted
as <FLUSH R B>.

The second observation category consists of two bricks
forming a corner. Such an observation would be made
if in state s0 in Table I a robot were positioned in the
upper right-hand corner and oriented toward the corner
formed by the Red and Green bricks. Such an observation
is denoted as <CORNER R B>.

The observations <FLUSH R B> and <FLUSH B R>
constitute two different observations in which the spa-
tial relationship between the Red and Blue bricks are
switched. A similar point holds for the observations
<CORNER R B> and <CORNER B R>. Given the task
state s2 from Table I, Table II lists all observations in the
set G(s2) with the observation Y (s2) highlighted.

C. Brick Placement Actions

The only actions in this construction domain that can
transition the task state are brick placement actions. There
are three such actions, with the first being the placement
of a brick on the right side (from the perspective of the
acting robot) of a pair of adjacent, aligned bricks. An
example action of this type can be seen in the placement
of the Green brick which transitions the state in the task
in Table I from s1 to s2. Such an action is denoted as
<G RIGHT FLUSH R B>.

The second action type is similar to the first except
the brick is placed on the left side of a pair of adjacent,
aligned bricks. An example of this action type can be
found in Figure I in the placement of the Yellow brick
which transitions the state from s2 to s3. Such an action
is denoted as <Y RIGHT FLUSH B G>.

The third action type is the placement of a brick in the
corner formed by two other bricks. An example of this
action type can be seen found in Figure I in the placement
of the Blue brick which transitions the state from s0 to
s1. Such an action is denoted as <B CORNER R G>.
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A SEQUENCE OF ENVIRONMENT STATES THAT DEFINE A CONSTRUCTION TASK. THE STRUCTURE IMAGES ARE TAKEN FROM A BIRDS-EYE-VIEW.

EACH BRICK IS LABELED WITH ITS COLOR: R=RED, B=BLUE, G=GREEN, Y=YELLOW.

Observation m − > m′ Action
<CORNER R G> 00 − > 00 <B CORNER R G>
<FLUSH R B> 00 − > 00 <G RIGHT FLUSH R B>
<CORNER G B> 00 − > 01 <Y CORNER G B>
<FLUSH B G> 01 − > 01 <Y LEFT FLUSH B G>
<CORNER B Y> 01 − > 01 <R CORNER B Y>
<FLUSH G Y> 01 − > 10 No Action
<FLUSH R Y> 10 − > 10 <B LEFT FLUSH R Y>
<CORNER R B> 10 − > 11 No Action
<FLUSH G Y> 11 − > 11 <R RIGHT FLUSH G Y>

TABLE III
RULES CONSTITUTING A SATISFICING CONTROLLER FOR THE CONSTRUCTION TASK IN TABLE I.

D. Satisficing Robot Controller

We now describe the satisficing controller for the
construction task shown in Table I. The robot makes
an observation, and if the current internal state value,
observation, and action match one of the rules from the
internal state transition function as shown in Table III, the
internal state value is transitioned to the value designated
by the matched rule. Next, if the current internal state
value and observation matches a rule from the action
function shown in Table III, the robot visual servos toward
the location where the brick placement action is to be
performed, as dictated by the matched rule. Once the
robot is within range to perform the action, the brick of
appropriate color is placed on the structure. If no rule
in the function is matched, the robot performs a random
walk, makes another observation, and the process repeats.

As can be seen, this satisficing robot controller for the
construction task in Table I requires 4 unique internal
state values. Our method does not guarantee to generate a
satisficing controller using a minimal number of internal
state values; however, for this particular construction task,

4 values is the minimal number required to correctly
execute the task.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a method for automated multi-
robot controller generation for correct task execution. The
individual robots in the system execute controllers using
internal state but do not have the capability for direct,
explicit inter-robot communication. Given these individual
robot capabilities, we have shown characteristics the task
must exhibit such that these capabilities are sufficient for
correct task execution. Understanding the capabilities and
limitations of a multi-robot system composed of robots
equipped with internal state but lacking the capability
for explicit, direct inter-robot communication contributes
insight into the larger question of understanding the
necessary characteristics of a coordination mechanism
in a multi-robot system required to correctly execute a
given task. Furthermore, such understanding can aid the
designer in making modifications to the task environment
or definition or the robot capabilities in order to transform



a situation in which internal state alone is not sufficient
to one in which it is sufficient to achieve correct task
execution.

Our future work includes the development of an al-
gorithm for constructing satisficing controllers using a
minimal number of unique internal state values. Applying
the formalism presented in this paper, we are also inves-
tigating the use of explicit inter-robot communication in
multi-robot coordination. Specifically, we are studying in
what circumstances such communication may replace or
beneficially augment the use of internal state and when it
may be required in order to correctly execute a MRS task.

VII. ACKNOWLEDGMENTS

This work is supported in part by Defense Advanced Research
Projects Agency (DARPA) Grant F30602-00-2-0573 and in part
by National Science Foundation Grant EIA-0121141.

REFERENCES

[1] T. Balch. Measuring robot group diversity. In Tucker
Balch and Lynne E. Parker, editors, Robot Teams:
From Diversity to Polymorphism, pages 93–135. AK
Peters, 2002.

[2] R. Beckers, O. Holland, and J. Deneubourg. From
local actions to global tasks: Stigmergy and col-
lective robotics. In Proceedings of Artificial Life
IV, Fourth International Workshop on the Synthesis
and Simulation of Living Systems, pages 181–189,
Cambridge, Massachusetts, 1994.

[3] E. Bonabeau, M. Dorigo, and G. Théraulaz. Swarm
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