
Real-Time Adaptive A*

Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

skoenig@usc.edu

Maxim Likhachev
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891

maxim+@cs.cmu.edu

ABSTRACT
Characters in real-time computer games need to move smoothly
and thus need to search in real time. In this paper, we describe a
simple but powerful way of speeding up repeated A* searches with
the same goal states, namely by updating the heuristics between A*
searches. We then use this technique to develop a novel real-time
heuristic search method, called Real-Time Adaptive A*, which is
able to choose its local search spaces in a fine-grained way. It up-
dates the values of all states in its local search spaces and can do so
very quickly. Our experimental results for characters in real-time
computer games that need to move to given goal coordinates in
unknown terrain demonstrate that this property allows Real-Time
Adaptive A* to follow trajectories of smaller cost for given time
limits per search episode than a recently proposed real-time heuris-
tic search method [5] that is more difficult to implement.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Graph and Tree Search Strategies

General Terms
Algorithms

Keywords
A*; Agent Planning; D* Lite; Games; Heuristic Search; Incremen-
tal Search; Perception, Action and Planning in Agents; Planning
with the Freespace Assumption; Real-Time Decision Making

1. INTRODUCTION
Agents need to use different search methods than the off-line search
methods often studied in artificial intelligence. Characters in real-
time computer games, for example, need to move smoothly and
thus need to search in real time. Real-time heuristic search meth-
ods find only the beginning of a trajectory from the current state
of an agent to a goal state [9, 4]. They restrict the search to a
small part of the state space that can be reached from the current
state with a small number of action executions (local search space).
The agent determines the local search space, searches it, decides

AAMAS 2006 May 8-12, 2006, Hakodate, Japan.

how to move within it, and executes one or more actions along
the resulting trajectory. The agent then repeats this process until it
reaches a goal state. Real-time heuristic search methods thus do not
plan all the way to a goal state which often results in smaller total
search times but larger trajectory costs. Most importantly, real-time
heuristic search methods can satisfy hard real-time requirements in
large state spaces since the sizes of their local search spaces (= their
lookaheads) are independent of the sizes of the state spaces and
can thus remain small. To focus the search and prevent cycling,
they associate heuristics with the states and update them between
searches, which accounts for a large chunk of the search time per
search episode. In this paper, we describe Real-Time Adaptive A*,
a novel real-time heuristic search method. It is a contract anytime
method [12] that is able to choose its local search spaces in a very
fine-grained way, updates the heuristics of all states in the local
search space and is able to do so very quickly. Our experimental re-
sults for goal-directed navigation tasks in unknown terrain demon-
strate that Real-Time Adaptive A* follows trajectories of smaller
cost for given time limits per search episode than a recently pro-
posed real-time heuristic search method [5] because it updates the
heuristics more quickly, which allows it to use larger local search
spaces and overcompensate for its slightly less informed heuristics.
At the same time, Real-Time Adaptive A* is easier to implement.

2. MAIN IDEA
Our main idea is simple but powerful. Assume that one has to
perform several A* searches with consistent heuristics in the same
state space and with the same goal states but possibly different start
states. Adaptive A* makes the heuristics more informed after each
A* search in order to speed up future A* searches. We now explain
the main idea behind Adaptive A*.

A* [3] is an algorithm for finding cost-minimal paths in state spaces
(graphs). For every state s, the user supplies a heuristic h[s] that
estimates the goal distance of the state (= the cost of a cost-minimal
path from the state to a goal state). The heuristics need to be con-
sistent [10]. For every state s encountered during the search, A*
maintains two values: the smallest cost g[s] of any discovered path
from the start state scurr to state s (which is initially infinity), and an
estimate f [s] := g[s] + h[s] of the distance from the start state scurr

via state s to a goal state. A* then operates as follows: It maintains
a priority queue, called open list, which initially contains only the
start state scurr. A* removes a state s with a smallest f-value from
the priority queue. If state s is a goal state, it terminates. Other-
wise, it expands the state, meaning that it updates the g-value of
each successor state of the state and then inserts those successor
states into the open list whose g-value decreased. It then repeats
the process. After termination, the g-value of every expanded state

s is equal to the distance from the start state scurr to state s.

We now explain how one can make the heuristics more informed
after each A* search in order to speed up future A* searches. As-
sume that s is a state that was expanded during such an A* search.
We can obtain an admissible (= non-overestimating) estimate of its
goal distance gd[s] as follows: The distance from the start state scurr

to any goal state via state s is equal to the distance from the start
state scurr to state s plus the goal distance gd[s] of state s. It clearly
can not be smaller than the goal distance gd[scurr] of the start state
scurr. Thus, the goal distance gd[s] of state s is no smaller than the
goal distance gd[scurr] of the start state scurr (= the f-value f [s̄] of
the goal state s̄ that was about to be expanded when the A* search
terminates) minus the distance from the start state scurr to state s (=
the g-value g[s] of state s when the A* search terminates).

g[s] + gd[s] ≥ gd[scurr]

gd[s] ≥ gd[scurr] − g[s]

gd[s] ≥ f [s̄] − g[s]

Consequently, f [s̄] − g[s] provides an admissible estimate of the
goal distance gd[s] of state s and can be calculated quickly. More
informed heuristics can be obtained by calculating and assigning
this difference to every state that was expanded during the A*
search and thus is in the closed list when the A* search terminates.
(The states in the open list are not updated since the distance from
the start state to these states can be smaller than their g-values when
the A* search terminates.) We evaluated this idea experimentally
in [7]. We now use it to develop a novel real-time heuristic search
method, called Real-Time Adaptive A* (RTAA*), which reduces
to the case discussed above if its lookahead is infinity.

3. NOTATION
We use the following notation to describe search tasks: S denotes
the finite set of states. scurr ∈ S denotes the start state of the search,
and GOAL ⊂ S denotes the set of goal states. A(s) denotes the
finite set of actions that can be executed in state s ∈ S. c[s, a] > ε

(for a given constant ε > 0) denotes the cost of executing action
a ∈ A(s) in state s ∈ S, whereas succ(s, a) ∈ S denotes the
resulting successor state. The action costs c can increase during
the search but we require the goal distances of all states to remain
bounded from above by some constant.

4. REAL-TIME ADAPTIVE A*
Figure 1 shows the pseudo code of RTAA*. The legend explains
the constants, variables, and functions that we will refer to in the
following. The variables annotated with [USER] have to be ini-
tialized before RTAA* is called. scurr needs to be set to the start
state of the agent, c to the initial action costs, and h to the ini-
tial heuristics, which need to be consistent for the initial action
costs, that is, need to satisfy h[s] = 0 for all goal states s and
h[s] ≤ h[succ(s, a)] + c[s, a] for all non-goal states s and actions
a that can be executed in them [10]. Variables annotated with [A*]
are updated during the call to astar() {03} (= line 3 in the pseudo
code), which performs a (forward) A* search guided by the cur-
rent heuristics from the current state of the agent toward the goal
states until a goal state is about to be expanded or lookahead > 0
states have been expanded. After the A* search, we require s̄ to
be the state that was about to be expanded when the A* search ter-
minated. We denote this state with s̄ consistently throughout this
paper. We require that s̄ = FAILURE if the A* search terminated

constants and functions
S set of states of the search task, a set of states
GOAL set of goal states, a set of states
A() sets of actions, a set of actions for every state
succ() successor function, a state for every state-action pair

variables
lookahead number of states to expand at most, an integer larger than zero
movements number of actions to execute at most, an integer larger than zero
scurr current state of the agent, a state [USER]
c current action costs, a float for every state-action pair [USER]
h current (consistent) heuristics, a float for every state [USER]
g g-values, a float for every state [A*]
CLOSED closed list of A* (= all expanded states), a set of states [A*]
s̄ state that A* was about to expand when it terminated, a state [A*]

procedure realtime adaptive astar():
{01} while (scurr 6∈ GOAL) do
{02} lookahead := any desired integer greater than zero;
{03} astar();
{04} if s̄ = FAILURE then
{05} return FAILURE;
{06} for all s ∈ CLOSED do
{07} h[s] := g[s̄] + h[s̄] − g[s];
{08} movements := any desired integer greater than zero;
{09} while (scurr 6= s̄ AND movements > 0) do
{10} a := the action in A(scurr) on the cost-minimal trajectory from scurr to s̄;
{11} scurr := succ(scurr, a);
{12} movements := movements − 1;
{13} for any desired number of times (including zero) do
{14} increase any desired c[s, a] where s ∈ S and a ∈ A(s);
{15} if any increased c[s, a] is on the cost-minimal trajectory from scurr to s̄ then
{16} break;
{17} return SUCCESS;

Figure 1: Real-Time Adaptive A*

due to an empty open list, in which case there is no finite-cost tra-
jectory from the current state to any goal state and RTAA* thus
returns failure {05}. We require CLOSED to contain the states ex-
panded during the A* search and the g-value g[s] to be defined for
all generated states s, including all expanded states. We define the
f-values f [s] := g[s] + h[s] for these states s. The expanded states
s form the local search space, and RTAA* updates their heuris-
tics by setting h[s] := f [s̄] − g[s] = g[s̄] + h[s̄] − g[s] {06-07}.
(The heuristics of the other states are not changed.) RTAA* then
executes actions along the trajectory found by the A* search un-
til state s̄ is reached (or, equivalently, a state is reached that was
not expanded or, also equivalently, the local search space is left),
movements > 0 actions have been executed, or the cost of an ac-
tion on the trajectory increases {09-16}. It then repeats the process
until it reaches a goal state, in which case it returns success {17}.

The values of lookahead and movements determine the behavior of
RTAA*. For example, RTAA* performs a single A* search from
the start state to a goal state and then moves the agent along the tra-
jectory found by the A* search to the goal state if it always chooses
infinity for lookahead and movements and no action costs increase.

We now prove several important properties of RTAA* that hold no
matter how it chooses its values of lookahead and movements. We
make use of the following known properties of A* searches with
consistent heuristics: First, they expand every state at most once.
Second, the g-values of every expanded state and state s̄ are equal
to the distance from the start state to state s and state s̄, respec-
tively. Thus, one knows cost-minimal trajectory from the start state
to all expanded states and state s̄. Third, the f-values of the se-
ries of expanded states over time are monotonically nondecreasing.
Thus, f [s] ≤ f [s̄] for all expanded states s and f [s̄] ≤ f [s] for all
generated states s that remained unexpanded.

THEOREM 1. The heuristics of the same state are monotoni-
cally nondecreasing over time and thus indeed become more in-
formed over time.

Proof: Assume that the heuristic of state s is updated on line {07}.
Then, state s was expanded and it thus holds that f [s] ≤ f [s̄].
Consequently, h[s] = f [s] − g[s] ≤ f [s̄] − g[s] = g[s̄] + h[s̄] −
g[s] and the update cannot decrease the heuristic of state s since it
changes the heuristic from h[s] to g[s̄] + h[s̄] − g[s].

THEOREM 2. The heuristics remain consistent.

Proof: We prove this property by induction on the number of A*
searches. The initial heuristics are provided by the user and con-
sistent. It thus holds that h[s] = 0 for all goal states s. This con-
tinues to hold since goal states are not expanded and their heuris-
tics thus not updated. (Even if RTAA* updated the heuristic of
state s̄, it would leave the h-value of that state unchanged since
f [s̄] − g[s̄] = g[s̄] + h[s̄] − g[s̄] = h[s̄]. Thus, the heuristics of
goal states would remain zero even in that case.) It also holds that
h[s] ≤ h[succ(s, a)] + c[s, a] for all non-goal states s and actions
a that can be executed in them. Assume that some action costs in-
crease on lines {13-14}. Let c denote the action costs before all
increases and c′ denote the action costs after all increases. Then,
h[s] ≤ h[succ(s, a)] + c[s, a] ≤ h[succ(s, a)] + c′[s, a] and the
heuristics thus remain consistent. Now assume that the heuristics
are updated on lines {06-07}. Let h denote the heuristics before all
updates and h′ denote the heuristics after all updates. We distin-
guish three cases:

• First, both s and succ(s, a) were expanded, which implies
that h′[s] = g[s̄] + h[s̄] − g[s] and h′[succ(s, a)] = g[s̄] +
h[s̄] − g[succ(s, a)]. Also, g[succ(s, a)] ≤ g[s] + c[s, a]
since the A* search discovers a trajectory from the current
state via state s to state succ(s, a) of cost g[s]+c[s, a] during
the expansion of state s. Thus, h′[s] = g[s̄] + h[s̄] − g[s] ≤
g[s̄]+h[s̄]−g[succ(s, a)]+c[s, a] = h′[succ(s, a)]+c[s, a].

• Second, s was expanded but succ(s, a) was not, which im-
plies that h′[s] = g[s̄] + h[s̄] − g[s] and h′[succ(s, a)] =
h[succ(s, a)]. Also, g[succ(s, a)] ≤ g[s] + c[s, a] for the
same reason as in the first case, and f [s̄] ≤ f [succ(s, a)]
since state succ(s, a) was generated but not expanded. Thus,
h′[s] = g[s̄] + h[s̄] − g[s] = f [s̄] − g[s] ≤ f [succ(s, a)] −
g[s] = g[succ(s, a)]+h[succ(s, a)]−g[s] = g[succ(s, a)]+
h′[succ(s, a)] − g[s] ≤ g[succ(s, a)] + h′[succ(s, a)] −
g[succ(s, a)] + c[s, a] = h′[succ(s, a)] + c[s, a].

• Third, s was not expanded, which implies that h′[s] =
h[s]. Also, h[succ(s, a)] ≤ h′[succ(s, a)] since the heuris-
tics of the same state are monotonically nondecreasing over
time. Thus, h′[s] = h[s] ≤ h[succ(s, a)] + c[s, a] ≤
h′[succ(s, a)] + c[s, a].

Thus, h′[s] ≤ h′[succ(s, a)] + c[s, a] in all three cases and the
heuristics thus remain consistent.

THEOREM 3. The agent reaches a goal state.

Proof: Assume that the heuristics are updated on lines {06-07}. Let
h denote the heuristics of RTAA* before all updates and h′ denote
the heuristics after all updates. The heuristics of the same state are
monotonically nondecreasing over time, according to Theorem 1.
Assume that the agent moves from its current state s to some state
s′ (with s 6= s′) along a cost-minimal trajectory from state s to
state s̄. It holds that h′[s] = f [s̄] − g[s] = f [s̄] since state s is
the start of the search and its g-value is thus zero and since it was
expanded and its heuristic was thus updated. Furthermore, it holds
that h′[s′] = f [s̄] − g[s′] since either state s′ was expanded and
its heuristic was thus updated or s′ = s̄ and then h′[s′] = h′[s̄] =
h[s̄] = f [s̄] − g[s̄] = f [s̄] − g[s′]. Thus, after the agent moved
from state s to state s′ and its current state thus changed from state
s to state s′, the heuristic of the current state decreased by h′[s] −
h′[s′] = f [s̄]− (f [s̄]− g[s′]) = g[s′] and the sum of the heuristics
of all states but its current state thus increased by g[s′], which is
bounded from below by a positive constant since s 6= s′ and we
assumed that all action costs are bounded from below by a positive
constant. Thus, the sum of the heuristics of all states but the current
state of the agent increases over time beyond any bound if the agent
does not reach a goal state. At the same time, the heuristics remain
consistent, according to Theorem 2 (since consistent heuristics are
admissible), and are thus no larger than the goal distances which
we assumed to be bounded from above, which is a contradiction.
Thus, the agent is guaranteed to reach a goal state.

THEOREM 4. If the agent is reset into the start state whenever
it reaches a goal state then the number of times that it does not fol-
low a cost-minimal trajectory from the start state to a goal state is
bounded from above by a constant if the cost increases are bounded
from below by a positive constant.

Proof: Assume for now that the cost increases leave the goal dis-
tances of all states unchanged. Under this assumption, it is easy
to see that the agent follows a cost-minimal trajectory from the
start state to a goal state if it follows a trajectory from the start
state to a goal state where the h-value of every state is equal to
its goal distance. If the agent does not follow such a trajectory,
then it transitions at least once from a state s whose h-value is not
equal to its goal distance to a state s′ whose h-value is equal to
its goal distance since it reaches a goal state according to Theo-
rem 3 and the h-value of the goal state is zero since the heuris-
tics remain consistent according to Theorem 2. We now prove that
the h-value of state s is then set to its goal distance. When the
agent executes some action a ∈ A(s) in state s and transitions
to state s′, then state s is a parent of state s′ in the A* search
tree produced during the last call of astar() and it thus holds that
(1) state s was expanded during the last call of astar(), (2) ei-
ther state s′ was also expanded during the last call of astar() or
s′ = s̄, (3) g[s′] = g[s] + c[s, a]. Let h denote the heuristics be-
fore all updates and h′ denote the heuristics after all updates. Then,
h′[s] = f [s̄] − g[s] and h′[s′] = f [s̄] − g[s′] = gd[s′]. The last
equality holds because we assumed that the h-value of state s′ was
equal to its goal distance and thus can no longer change since it
could only increase according to Theorem 1 but would then make
the heuristics inadmissible and thus inconsistent, which is impossi-
ble according to Theorem 2. Consequently, h′[s] = f [s̄] − g[s] =
gd[s′] + g[s′] − g[s] = gd[s′] + c[s, a] ≥ gd[s], proving that
h′[s] = gd[s] since a larger h-value would make the heuristics in-
admissible and thus inconsistent, which is impossible according to
Theorem 2. Thus, the h-value of state s is indeed set to its goal

distance. After the h-value of state s is set to its goal distance, the
h-value can no longer change since it could only increase accord-
ing to Theorem 1 but would then make the heuristics inadmissi-
ble and thus inconsistent, which is impossible according to The-
orem 2. Since the number of states is finite, it can happen only
a bounded number of times that the h-value of a state is set to its
goal distance. Thus, the number of times that the agent does not
follow a cost-minimal trajectory from the start state to a goal state
is bounded. The theorem then follows since the number of times
that a cost increase does not leave the goal distances of all states
unchanged is bounded since we assumed that the cost increases are
bounded from below by a positive constant but the goal distances
are bounded from above. After each such change, the number of
times that the agent does not follow a cost-minimal trajectory from
the start state to a goal state is bounded.

5. RELATIONSHIP TO LRTA*
RTAA* is similar to a version of Learning Real-Time A* recently
proposed in [5], an extension of the original Learning Real-Time
A* algorithm [9] to larger lookaheads. For simplicity, we refer
to this particular version of Learning Real-Time A* as LRTA*.
RTAA* and LRTA* differ only in how they update the heuristics
after an A* search. LRTA* replaces the heuristic of each expanded
state with the sum of the distance from the state to a generated
but unexpanded state s and the heuristic of state s, minimized over
all generated but unexpanded states s. (The heuristics of the other
states are not changed.) Let h̄′ denote the heuristics after all up-
dates. Then, the heuristics of LRTA* after the updates satisfy the
following system of equations for all expanded states s:

h̄
′[s] = min

a∈A(s)
(c[s, a] + h̄

′[succ(s, a)])

The properties of LRTA* are similar to the ones of RTAA*. For
example, its heuristics for the same state are monotonically nonde-
creasing over time and remain consistent, and the agent reaches a
goal state. We now prove that LRTA* and RTAA* behave exactly
the same if their lookahead is one and they break ties in the same
way. They can behave differently for larger lookaheads, and we
give an informal argument why the heuristics of LRTA* tend to be
more informed than the ones of RTAA* with the same lookaheads.
On the other hand, it takes LRTA* more time to update the heuris-
tics and it is more difficult to implement, for the following reason:
LRTA* performs one search to determine the local search space
and a second search to determine how to update the heuristics of
the states in the local search space since it is unable to use the re-
sults of the first search for this purpose, as explained in [5]. Thus,
there is a trade-off between the total search time and the cost of the
resulting trajectory, and we need to compare both search methods
experimentally to understand this trade-off better.

THEOREM 5. RTAA* with lookahead one behaves exactly like
LRTA* with the same lookahead if they break ties in the same way.

Proof: We show the property by induction on the number of A*
searches. The heuristics of both search methods are initialized with
the heuristics provided by the user and are thus identical before the
first A* search. Now consider any A* search. The A* searches
of both search methods are identical if they break ties in the same
way. Let s̄ be the state that was about to be expanded when their A*
searches terminated. Let h denote the heuristics of RTAA* before

all updates and h′ denote the heuristics after all updates. Simi-
larly, let h̄ denote the heuristics of LRTA* before all updates and
h̄′ denote the heuristics after all updates. Assume that h[s] = h̄[s]
for all states s. We show that h′[s] = h̄′[s] for all states s. Both
search methods expand only the current state s of the agent and
thus update only the heuristic of this one state. Since s 6= s̄, it
holds that h′[s] = g[s̄] + h[s̄] − g[s] = g[s̄] + h[s̄] and h̄′[s] =
mina∈A(s)(c[s, a] + h̄′[succ(s, a)]) = mina∈A(s)(g[succ(s, a)]+
h̄′[succ(s, a)]) = mina∈A(s)(g[succ(s, a)] + h̄[succ(s, a)]) =
g[s̄]+ h̄[s̄] = g[s̄]+h[s̄]. Thus, both search methods set the heuris-
tic of the current state to the same value and then move to state s̄.
Notice that lookahead = 1 implies without loss of generality that
movements = 1. Consequently, they behave exactly the same.

We now give an informal argument why the heuristics of LRTA*
with lookaheads larger than one tend to be more informed than the
ones of RTAA* with the same lookahead (if both real-time heuris-
tic search methods use the same value of movements). This is not
a proof but gives some insight into the behavior of the two search
methods. Assume that both search methods are in the same state
and break ties in the same way. Let h denote the heuristics of
RTAA* before all updates and h′ denote the heuristics after all up-
dates. Similarly, let h̄ denote the heuristics of LRTA* before all
updates and h̄′ denote the heuristics after all updates. Assume that
h[s] = h̄[s] for all states s. We now prove that h′[s] ≤ h̄′[s] for all
states s. The A* searches of both search methods are identical if
they break ties in the same way. Thus, they expand the same states
and thus also update the heuristics of the same states. We now
show that the heuristics h′ cannot be consistent if h′[s] > h̄′[s] for
at least one state s. Assume that h′[s] > h̄′[s] for at least one state
s. Pick a state s with the smallest h̄′[s] for which h′[s] > h̄′[s] and
pick an action a with a = arg mina∈A(s)(c[s, a] + h̄′[succ(s, a)].
State s must have been expanded since h[s] = h̄[s] but h′[s] >

h̄′[s]. Then, it holds that h̄′[s] = c[s, a] + h̄′[succ(s, a)]. Since
h̄′[s] = c[s, a] + h̄′[succ(s, a)] > h̄′[succ(s, a)] and state s is a
state with the smallest h̄′[s] for which h′[s] > h̄′[s], it must be the
case that h′[succ(s, a)] ≤ h̄′[succ(s, a)]. Put together, it holds that
h′[s] > h̄′[s] = c[s, a] + h̄′[succ(s, a)] ≥ c[s, a] + h′[succ(s, a)].
This means that the heuristics h′ are inconsistent but we have ear-
lier proved already that they remain consistent, which is a contra-
diction. Consequently, it holds that h′[s] ≤ h̄′[s] for all states s.
Notice that this proof does not imply that the heuristics of LRTA*
always dominate the ones of RTAA* since the search methods can
move the agent to different states and then update the heuristics of
different states, but it suggests that the heuristics of LRTA* with
lookaheads larger than one tend to be more informed than the ones
of RTAA* with the same lookaheads and thus that the trajectories
of LRTA* tend to be of smaller cost than the trajectories of RTAA*
with the same lookaheads (if both real-time heuristic search meth-
ods use the same value of movements).

In the remainder of the paper, we assume that the agents always
choose the same constant for lookahead, which is an external pa-
rameter, and always use infinity for movements, both for LRTA*
and RTAA*.

6. APPLICATION
Real-time heuristic search methods are often used as alternative to
traditional search methods for solving offline search tasks [9]. We,
however, apply RTAA* to goal-directed navigation in unknown ter-
rain, a search task that requires agents to execute actions in real
time. Characters in real-time computer games, for example, of-

Figure 2: Total Annihilation

ten do not know the terrain in advance but automatically observe it
within a certain range around them and then remember it for future
use. Figure 2 shows an example. To make these agents easy to
control, the users can click on some position in known or unknown
terrain and the agents then move autonomously to this position. If
the agents observe during execution that their current trajectory is
blocked, then they need to search for another plan. The searches
need to be fast since the agents need to move smoothly even if the
processor is slow, the other game components use most of the avail-
able processor cycles and there are a large number of agents that all
have to search repeatedly. Thus, there is a time limit per A* search,
which suggests that real-time heuristic search methods are a good
fit for our navigation tasks. To apply them, we discretize the terrain
into cells that are either blocked or unblocked, a common practice
in the context of real-time computer games [1]. The agents initially
do not know which cells are blocked but use a navigation strat-
egy from robotics [8]: They assume that cells are unblocked unless
they have the cells already observed to be blocked (freespace as-
sumption). They always know which (unblocked) cells they are in,
observe the blockage status of their four neighboring cells, raise
the action costs of actions that enter the newly observed blocked
cells, if any, from one to infinity, and then move to any one of the
unblocked neighboring cells with cost one. We therefore use the
Manhattan distances as consistent heuristic estimates of the goal
distances. The task of the agents is to move to the given goal cell,
which we assume to be possible.

7. ILLUSTRATION
Figure 3 shows a simple goal-directed navigation task in unknown
terrain that we use to illustrate the behavior of RTAA*. Black
squares are blocked. All cells have their initial heuristic in the
lower left corner. We first compare RTAA* with lookahead infinity
to LRTA* with the same lookahead and forward A* searches. All
search methods start a new search episode (= run another search)
when the cost of an action on their current trajectory increases and
break ties between cells with the same f-values in favor of cells
with larger g-values and remaining ties in the following order, from
highest to lowest priority: right, down, left and up. We do this
since we believe that systematic rather than random tie-breaking
helps the readers to understand the behavior of the different search
methods better since all search methods then follow the same tra-
jectories. Figures 4, 5, and 6 show the agent as a small black circle.

1

3

3

1

3

7

1

3

4

011234

12345

23456

34567

45678

goalstart

Figure 3: Example

81012

76323

65434

7654

81246

88368

888810

10101010

1

3

01234

12345

23456

34567

45678

71323

67312

54401

43212

5432

71557

79357

77857

77779

9999

1

3

01234

12345

23456

34567

45678

Figure 4: Forward A* Searches

81012

76323

65434

7654

81246

88368

888810

10101010

1876

1365

2345

01234

12345

23456

34567

45678

7123

67312

54401

43212

5432

7199

79377

77857

77779

9999

1

1365

2476

3456

01876

12365

23456

34567

45678

Figure 5: RTAA* with lookahead = ∞

81012

76323

65434

7654

81246

88368

888810

10101010

1878

1367

2345

01234

12345

23456

34567

45678

712

67312

54401

43212

5432

719

79379

77857

77779

9999

1

138

2478

3456

01878

12367

23456

34567

45678

Figure 6: LRTA* with lookahead = ∞

The arrows show the planned trajectories from the current cell of
the agent to the goal cell, which is in the lower right corner. Cells
that the agent has already observed to be blocked are black. All
other cells have their heuristic in the lower left corner. Generated
cells have their g-value in the upper left corner and their f-value in
the upper right corner. Expanded cells are grey and, for RTAA*
and LRTA*, have their updated heuristics in the lower right corner,
which makes it easy for the readers to compare them to the heuris-
tics before the update in the lower left corner. Notice that forward
A* searches, RTAA* with lookahead infinity and LRTA* with the
same lookahead follow the same trajectories if they break ties in

1012

323

3

1246

368

8

1876

36

01234

12345

23456

34567

45678

121

310

4321

43

197

375

7777

99

1

367

45

01876

12365

23456

34567

45678

12

312

301

212

2

19

379

757

779

9

1

36

476

6

01876

12367

23456

34567

45678

1

43

323

2101

321

1

53

557

5557

777

1

3

24

345

01876

12367

23476

34567

45678

11

013

13

11

133

37

1

13

4

01876

12367

23476

34567

45678

Figure 7: RTAA* with lookahead = 4

the same way. They differ only in the number of cell expansions,
which is larger for forward A* searches (23) than for RTAA* (20)
and larger for RTAA* (20) than for LRTA* (19). The first property
is due to RTAA* and LRTA* updating the heuristics while forward
A* searches do not. Thus, forward A* searches fall prey to the local
minimum in the heuristic value surface and thus expand the three
leftmost cells in the lowest row a second time, while RTAA* and
LRTA* avoid these cell expansions. The second property is due
to some updated heuristics of LRTA* being larger than the ones of
RTAA*. Notice, however, that most updated heuristics are identi-
cal, although this is not guaranteed in general. We also compare
RTAA* with lookahead four to RTAA* with lookahead infinity.
Figures 5 and 7 show that decreasing the lookahead of RTAA* in-
creases the trajectory cost (from 10 to 12) but decreases the number
of cell expansions (from 20 to 17) because smaller lookaheads im-
ply that less information is used during each search episode. (No-
tice that the last search episode of RTAA* with lookahead four ex-
pands only one cell since the goal cell is about to be expanded
next.) We now perform systematic experiments to see whether they
confirm the trends shown in our examples.

8. EXPERIMENTAL RESULTS
We now run experiments to compare RTAA* to forward A*
searches and LRTA*, as in the previous section. All three search
methods search forward. We also compare RTAA* to two search
methods that search backward, namely backward A* searches and
D* Lite [6] (an incremental version of backward A* searches that
is similar to but simpler than D* [11]), which is possible because

Figure 8: Test Terrain: Mazes

there is only one goal cell.1 All search methods use binary heaps
as priority queues and now break ties between cells with the same
f-values in favor of cells with larger g-values (which is known to be
a good tie-breaking strategy) and remaining ties randomly.

We perform experiments on a SUN PC with a 2.4 GHz AMD
Opteron Processor 150 in randomly generated four-connected
mazes of size 151 × 151 that are solvable. Their corridor struc-
ture is generated with depth-first search. The start and goal cells
are chosen randomly. Figure 8 shows an example (of smaller size
than used in the experiments). We use the Manhattan distances as
heuristics. The performance measures in Table 1 are averaged over
the same 2500 grids. We show the standard deviation of the mean
for three key performance measures in square brackets to demon-
strate the statistical significance of our results, namely the total
number of cell expansions and the total search time on one hand
and the resulting trajectory cost on the other hand. We first verify
the properties suggested in the previous sections:

• RTAA* with lookahead infinity, LRTA* with the same looka-
head, D* Lite and forward and backward A* searches follow
the same trajectories if they break ties in the same way and
their trajectory costs are indeed approximately equal. (The
slight differences are due to remaining ties being broken ran-
domly.) The total number of cell expansions and the total
search time are indeed larger for forward A* searches than
RTAA*, and larger for RTAA* than LRTA*, as suggested in
“Illustration.”

• Decreasing the lookahead of RTAA* indeed increases the
trajectory cost but initially decreases the total number of cell
expansions and the total search time, as suggested in “Il-

1Notice that the total number of cell expansions and total search
time of forward A* searches are significantly smaller than the ones
of backward A* searches. The big impact of the search direction
can be explained as follows: The agent observes blocked cells close
to itself. Thus, the blocked cells are close to the start of the search
in the early phases of forward A* searches, but close to the goal of
the search in the early phases of backward A* searches. The closer
the blocked cells are to the start of the search, the more cells there
are for which the Manhattan distances are perfectly informed and
thus the faster A* searches are that break ties between cells with
the same f-values in favor of cells with larger g-values since they
expand only states along a cost-minimal trajectory from cells for
which the Manhattan distances are perfectly informed to the goal
of the search.

Table 1: Experiments in Mazes
(a) = lookahead (= bound on the number of cell expansions per search episode), (b) = total number of cell expansions (until the agent reaches the goal cell) [in square brackets:
standard deviation of the mean], (c) = total number of search episodes (until the agent reaches the goal cell), (d) = trajectory cost (= total number of action executions until the
agent reaches the goal cell) [in square brackets: standard deviation of the mean], (e) = number of action executions per search episode, (f) = total search time (until the agent
reaches the goal cell) in microseconds [in square brackets: standard deviation of the mean], (g) = search time per search episode in microseconds, (h) = search time per ac-
tion execution in microseconds, (i) = increase of heuristics per search episode and expanded cell (= per update) = h′[s]−h[s] averaged over all search episodes and expanded cells s

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Real-Time Adaptive A* (RTAA*)

1 248537.79 [5454.11] 248537.79 248537.79 [5454.11] 1.00 48692.17 [947.08] 0.20 0.20 1.00
9 104228.97 [2196.69] 11583.50 56707.84 [1248.70] 4.90 23290.36 [360.77] 2.01 0.41 2.40

17 85866.45 [1701.83] 5061.92 33852.77 [774.35] 6.69 22100.20 [301.99] 4.37 0.65 3.10
25 89257.66 [1593.02] 3594.51 26338.21 [590.00] 7.33 24662.64 [310.42] 6.86 0.94 3.30
33 96839.84 [1675.46] 2975.65 22021.81 [521.77] 7.40 27994.45 [350.79] 9.41 1.27 3.28
41 105702.99 [1699.20] 2639.59 18628.66 [435.06] 7.06 31647.50 [382.30] 11.99 1.70 3.08
49 117035.65 [1806.59] 2473.55 16638.27 [390.09] 6.73 35757.69 [428.17] 14.46 2.15 2.90
57 128560.04 [1939.38] 2365.94 15366.63 [361.95] 6.49 39809.02 [477.72] 16.83 2.59 2.79
65 138640.02 [2019.98] 2270.38 14003.74 [314.38] 6.17 43472.99 [517.36] 19.15 3.10 2.63
73 150254.51 [2176.68] 2224.29 13399.01 [309.72] 6.02 47410.44 [567.88] 21.31 3.54 2.57
81 160087.23 [2269.20] 2172.94 12283.65 [270.03] 5.65 50932.60 [608.94] 23.44 4.15 2.39
89 172166.56 [2436.73] 2162.75 12078.40 [261.16] 5.58 54874.88 [663.96] 25.37 4.54 2.37
∞ 642823.02 [20021.00] 1815.92 5731.20 [81.72] 3.16 226351.59 [7310.53] 124.65 39.49 4.22

Learning Real-Time A* (LRTA*)
1 248537.79 [5454.11] 248537.79 248537.79 [5454.11] 1.00 67252.19 [1354.67] 0.27 0.27 1.00
9 87613.37 [1865.31] 9737.38 47290.61 [1065.07] 4.86 27286.14 [437.09] 2.80 0.58 2.93

17 79312.59 [1540.44] 4676.76 30470.32 [698.08] 6.52 29230.15 [409.96] 6.25 0.96 3.61
25 82850.86 [1495.61] 3338.86 23270.38 [551.75] 6.97 34159.80 [450.49] 10.23 1.47 3.74
33 92907.75 [1548.37] 2858.19 20015.55 [472.86] 7.00 40900.68 [516.47] 14.31 2.04 3.71
41 102787.86 [1619.33] 2570.83 17274.12 [403.65] 6.72 47559.60 [587.96] 18.50 2.75 3.54
49 113139.63 [1716.88] 2396.66 15398.47 [360.45] 6.42 54324.06 [665.02] 22.67 3.53 3.38
57 125013.41 [1829.10] 2307.68 14285.14 [328.39] 6.19 61590.97 [744.33] 26.69 4.31 3.25
65 133863.67 [1956.49] 2201.60 13048.50 [300.69] 5.93 67482.95 [829.44] 30.65 5.17 3.12
73 146549.69 [2080.76] 2181.76 12457.92 [277.60] 5.71 74868.92 [909.31] 34.32 6.01 3.02
81 157475.45 [2209.65] 2150.04 11924.96 [262.61] 5.55 81469.32 [989.84] 37.89 6.83 2.95
89 166040.29 [2355.33] 2102.91 11324.72 [246.94] 5.39 86883.98 [1077.54] 41.32 7.67 2.88
∞ 348072.76 [7021.57] 1791.19 5611.09 [80.43] 3.13 203645.42 [3782.37] 113.69 36.29 8.20

D* Lite
– 47458.83 [581.03] 1776.24 5637.46 [77.03] 3.17 37291.83 [378.20] 20.99 6.62 –

Forward A* Search
– 1857468.48 [68324.90] 1732.07 5354.26 [76.91] 3.09 544065.45 [21565.61] 314.11 101.61 –

Backward A* Search
– 5245087.82 [93697.15] 1795.72 5535.05 [77.09] 3.08 1698163.04 [31051.10] 945.67 306.80 –

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60 70 80 90

lookahead of Real-Time Adaptive A* (RTAA*) = (a)

total number of cell expansions = (b)
trajectory cost = (d)

total search time = (f)

Figure 9: Performance of Real-Time Adaptive A*

lustration.” Increasing the trajectory cost increases the to-
tal number of search episodes. If the lookahead is already
small and continues to decrease, then eventually the speed
with which the total number of search episodes increases
is larger than the speed with which the lookahead and the
time per search episode decreases, so that the number of cell
expansions and the total search time increase again, as the
graphs in Figure 9 show. (The graph also shows that the to-

tal number of cell expansions and the total search time are
proportional, as expected.)

• RTAA* with lookaheads larger than one and smaller than in-
finity indeed increases the heuristics less than LRTA* with
the same lookaheads per update, as suggested in “Relation-
ship to LRTA*.” Consequently, its trajectory costs and total
number of cell expansions are larger than the ones of LRTA*
with the same lookaheads. However, it updates the heuristics
much faster than LRTA* with the same lookaheads, resulting
in smaller total search times.

• RTAA* with lookahead one and LRTA* with the same looka-
head follow the same trajectories and update the same states
if they break ties in the same way and their trajectory costs
and total number of cell expansions are indeed approxi-
mately equal, as suggested in “Relationship to LRTA*.”

One advantage of RTAA* is that its total planning time with a care-
fully chosen lookahead is smaller than that of all other search meth-
ods, although its trajectory costs then are not the smallest ones.
This is important for applications where planning is slow but ac-
tions can be executed fast. However, the advantage of RTAA* over
the other search methods for our particular application is a different
one: Remember that there is a time limit per search episode so that
the characters move smoothly. If this time limit is larger than 20.99
microseconds, then one should use D* Lite for the search because
the resulting trajectory costs are smaller than the ones of all other

search methods whose search time per search episode is no larger
than 20.99. (The table shows that the trajectory costs of forward
A* search are smaller but, as argued before, this difference is due
to noise.) However, if the time limit is smaller than 20.99 microsec-
onds, then one has to use a real-time heuristics search method. In
this case, one should use RTAA* rather than LRTA*. Assume, for
example, that the time limit is 20.00 microseconds. Then one can
use either RTAA* with a lookahead of 67, resulting in a trajectory
cost of 13657.31, or LRTA* with a lookahead of 43, resulting in a
trajectory cost of 16814.49. Thus, the trajectory cost of LRTA* is
about 23 percent higher than the one of RTAA*, which means that
RTAA* improves the state of the art in real-time heuristic search.
A similar argument holds if the search time is amortized over the
number of action executions, in which case there is a time limit per
action execution. If this time limit is larger than 6.62 microseconds,
then one should use D* Lite for the search because the resulting
trajectory costs are smaller than the ones of all other search meth-
ods whose search time per action execution is no larger than 6.62.
However, if the time limit is smaller than 6.62 microseconds, then
one has to use a real-time heuristics search method. In this case,
one should use RTAA* rather than LRTA*. Assume, for example,
that the time limit is 4.00 microseconds. Then one can use either
RTAA* with a lookahead of 79, resulting in a trajectory cost of
12699.99, or LRTA* with a lookahead of 53, resulting in a trajec-
tory cost of 14427.80. Thus, the trajectory cost of LRTA* is about
13 percent higher than the one of RTAA*, which again means that
RTAA* improves the state of the art in real-time heuristic search.

9. CONCLUSIONS
In this paper, we developed Real-Time Adaptive A* (RTAA*). This
real-time heuristic search method is able to choose its local search
spaces in a fine-grained way. It updates the values of all states in
its local search spaces and can do so very quickly. Our experi-
mental results for goal-directed navigation tasks in unknown ter-
rain demonstrated that this property allows RTAA* to move to the
goal with smaller total search times than a variety of tested alter-
native search methods. Furthermore, we showed that RTAA* fol-
lows trajectories of smaller cost for given time limits per search
episode than a recently proposed real-time heuristic search method
because it updates the heuristics more quickly, which allows it to
use larger local search spaces and overcompensate for its slightly
less informed heuristics. It is future work to extend RTAA* to in-
consistent heuristics, compare it to real-time heuristic search meth-
ods besides LRTA* and combine the idea behind RTAA* with other
ideas of enhancing real-time heuristic search methods, for example,
the ones described in [2] and [4]. In particular, it would be interest-
ing to study a hierarchical version of RTAA*.

Acknowledgments
This research has been partly supported by an NSF award to Sven
Koenig under contract IIS-0350584. The views and conclusions
contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, companies
or the U.S. government.

10. REFERENCES
[1] M. Bjornsson, M. Enzenberger, R. Holte, J. Schaeffer, and

P. Yap. Comparison of different abstractions for pathfinding
on maps. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1511–1512,
2003.

[2] V. Bulitko and G. Lee. Learning in real-time search: A
unifying framework. Journal of Artificial Intelligence
Research, page (in press), 2005.

[3] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics,
2:100–107, 1968.

[4] T. Ishida. Real-Time Search for Learning Autonomous
Agents. Kluwer Academic Publishers, 1997.

[5] S. Koenig. A comparison of fast search methods for real-time
situated agents. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems,
pages 864–871, 2004.

[6] S. Koenig and M. Likhachev. D* Lite. In Proceedings of the
National Conference on Artificial Intelligence, pages
476–483, 2002.

[7] S. Koenig and M. Likhachev. Adaptive A* [poster abstract].
In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems, pages
1311–1312, 2005.

[8] S. Koenig, C. Tovey, and Y. Smirnov. Performance bounds
for planning in unknown terrain. Artificial Intelligence,
147:253–279, 2003.

[9] R. Korf. Real-time heuristic search. Artificial Intelligence,
42(2-3):189–211, 1990.

[10] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1985.

[11] A. Stentz. The focussed D* algorithm for real-time
replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 1652–1659,
1995.

[12] S. Zilberstein. Operational Rationality through Compilation
of Anytime Algorithms. PhD thesis, Computer Science
Department, University of California at Berkeley, Berkeley
(California), 1993.

