
Designing the Next-Generation Handy Board
Fred G. Martin and George J. Pantazopoulos

University of Massachusetts Lowell
Computer Science Department

1 University Avenue, Lowell, MA 01854
fredm@cs.uml.edu, gpantazo@cs.uml.edu

Abstract
The Handy Board is a robot controller board widely used in
undergraduate education. It has a feature set optimized for
mobile robotics in the classroom, including Interactive C, an
easy-to-use development environment. This paper analyzes
the features that made the Handy Board successful, provides
a framework for understanding tradeoffs in the computation-
al power of embedded systems and the development
environments that can be used with them, and presents plans
for a next-generation Handy Board design.

Introduction
The Handy Board is a palm-sized robot control board that
was developed in the early 1990s for use with the under-
graduate “6.270” LEGO Robot Design Competition at the
Massachusetts Institute of Technology (MIT). The full
hardware design (including PCB artwork) and a version of
its specialized “Interactive C” software were released to the
public with an open-source license in 1995. The design is
now in widespread use worldwide, in universities, colleges,
and secondary schools. Here, we describe the qualities that
made the Handy Board design successful, and present
goals and initial plans for a next-generation design. This
paper is meant as a catalyst for conversation; we welcome
input regarding our work plans.

Figure 1: The Handy Board

Why the Handy Board is Successful
The Handy Board (Figure 1) is a remarkably durable
design, with essentially no design changes in 10 years, and
only minor updates from an earlier version used in the
1991 MIT robotics course (Martin, 1994). It’s worth
considering why this is so.

Most importantly, the Handy Board was designed for a
very specific target application: building small mobile
robots in a classroom environment. It includes a compre-
hensive feature set for this application: on-board DC motor
drivers, individual connectors for sensors, a built-in re-
chargeable battery pack, an LCD screen for status
messages, non-volatile program memory, user buttons, and
a beeper.

The Handy Board comes with Interactive C (IC), an inno-
vative C-language software system for embedded program-
ming (Sargent, 2004). IC is a combination of compiler that
runs on a desktop/laptop workstation PC, and a stack-based
virtual machine (VM) that runs on the Handy Board. The
IC compiler outputs code for the custom stack language
interpreted by the VM. IC includes an interactive, Lisp-
like console that lets the user dynamically type individual
statements and code blocks for immediate compilation and
execution on the Handy Board. This gives the system the
flavor of a fully interpreted language. Interactive C “just
works,” and makes embedded programming accessible to
novices. With the recent support of the Kiss Institute for
Practical Robotics, the IC application has been updated for
today’s latest desktop operating systems.

Other factors include:

A fully documented, open hardware design. The Handy
Board’s hardware design is documented on the web and in
print (Martin, 2001) and has an open-source license. The
documentation encourages users to understand how the
design works and adapt it to their needs, be they peda-
gogical or practical. The open-source license has encour-
aged adoption in terms of community good will and also
has facilitated its use in developing countries (printed
circuit boards can be locally fabricated with no licensing
fees).

Sturdy and easy to repair. In normal classroom use, the
board is routinely abused. The design uses “high-speed”
CMOS chips (introduced in 1982), which are fairly robust.
When repairs are needed, all but one of the chips are
socketed, allowing easy replacement.

Relatively low cost. In the United States, the Handy
Board retails for $300, which is a good value considering
its included features.

Limitations of the Current Design
The primary limitation of the Handy Board is its raw
computational horsepower. It uses an 8-bit CPU running
with a 2 MHz system clock (the Motorola 68HC11) and
has only 32k bytes of main memory. For simple robot
programs of a few pages or so of code this is adequate, but
once one desires to do something more complicated (like
mapping or behavior-based robot programming) the Handy
Board will come up short.

Along other dimensions, such as sensor and actuator I/O,
the Handy Board does quite nicely. The main board has
outputs for 4 motors and inputs for 16 sensors (9 digital
and 7 analog). When equipped with its Expansion Board, it
gains 6 servo motor outputs, 8 digital outputs, and 14
additional analog sensor inputs.

Alternatives to the Handy Board
The Handy Board has at least a few significant compet-
itors:

The LEGO RCX Brick. As part of the LEGO Mindstorms
Robotics Invention System launched in 1998, the LEGO
RCX controller was an immediate hit, especially with
adults. For the first time, a person with no prior electronics
or computer expertise could build a fully functioning auto-
nomous robot. More recently, advanced software environ-
ments that work with the RCX brick have been developed
(including support for Common Lisp, Java, and machine
learning algorithms), allowing it to be used with under-
graduate computer science majors (Klassner and Anderson,
2002).

The advantages of the RCX Brick over the Handy Board
are lower cost ($200 for the RCX Brick including sensors,
motors, and the LEGO elements required to build a small
robot), and better connectors.

The BASIC Stamp. For those more interested in electrical
engineering than coding, the BASIC Stamp is a good
option (Parallax, 2004). First released in 1992, the BASIC
Stamp is now a family of devices that combine small
microprocessors with a BASIC virtual machine and an
easy-to-use desktop programming environment. The
BASIC Stamp processor itself sells for as little as $29. A
full project requires that users add their own breadboard,

wiring, sensor circuits, power supply, etc—in other words,
to do circuit design. This makes it somewhat less desirable
if the goal is to quickly build and then program a mobile
robot.

The Stamp has been a success because of its software; its
BASIC language is easy to learn, and the software and
documentation let users get up and running quickly. Also,
the device comes with a nice set of signal-level drivers,
such as servo motor outputs and serial communications.

Single-Board PCs and Handhelds. Another approach is
to embed an entire PC into the robot. The industry
standard “PC104” is a small form-factor PC-on-a-board,
with support from multiple vendors. (These systems are
surprisingly expensive—well more than low-end desktop
PCs.) Also, one can use a Palm or PocketPC device as a
robot’s brain, and have it communicate with an external
sensor/actuator IO board.

Design Goals for the Next Generation
Above all, a new Handy Board should have the same ease
of use that characterizes the current design. It should “just
work.” In framing the overall design objectives, we will
keep in mind the same application that motivated us in the
past: the development of a controller of a small classroom
robot. Based on the previous discussion, the main thing we
need to add is CPU “zorch”—the existing Handy Board
has a reasonable complement of device I/O.

Let’s look more closely at what kinds of software scenarios
would be possible with a faster CPU and more memory.

Figure 2: Location of Development Smarts
Versus CPU Power

In Figure 2, the vertical axis indicates the locus of software
development “smarts.” The bottom row indicates software
running on a desktop workstation; e.g., a compiler or an

Interpr. lang
w/dev tools
• Forth, Logo

VM w/
X-compile
• IC VM
• JVM

Full OS & dev
• Linux on
ActivMedia
Pioneer robot

• C-lang
 X-compile
• Assembly

Robot

Shared

Desktop

Required CPU/RAM/ROM more

Handy Board HANDY-ARM

Interpr. lang
w/dev tools &
small OS
• Lisp
• Smalltalk

Small OS w/
X-compile
• eCos

assembler. The top row indicates software running on the
robot controller board; e.g., an interpreted language, or an
operating system.

The horizontal axis shows how much computing horse-
power is required to accomplish a particular software de-
velopment environment. On the left are low-powered
systems; on the right are high-powered ones.

Now let’s look at specific points in this space. In the
lower-left corner is the traditional embedded development
environment. A desktop computer runs a cross-compiler
(“X-compiler” in the diagram) or an assembler, and the
resulting code is loaded onto the target system. With this
development framework, while target may be anything,
from the smallest chip to a powerful computer, this is the
least interactive, least interesting point in the space.

Moving up the left column is one of the “shared” options,
where development smarts are located both on the desktop
and the robot. This position is represented by the virtual
machine (VM) approach. A VM runs on the robot plat-
form, and the desktop runs a cross-compiler for this VM.
Interactive C running on the Handy Board is in this space;
so are the small Java Virtual Machines (JVMs) that are
available for 8-bit microprocessors (e.g., Ridgesoft, 2004).
Here, the limited computing resources of a low-powered
target platform are leveraged by using a desktop compiler
that can creatively (and interactively) place the right
resources on the target as they are needed.

At the top of the left column are small, interpreted lang-
uages that can be fully hosted on the robot platform. The
Forth language is a good example (Hempel, 2004). The
desktop computer is used only as a communications ter-
minal, and code editing and compilation (if necessary) take
place wholly on the robot target.

The 68HC11 Handy Board corresponds to the first column
of this diagram. Aside from its set of hardware features,
Interactive C distinguished the Handy Board from other 8-
bit systems. IC made code writing more productive and
debugging more effective.

Looking forward, the interesting part of the diagram is the
middle column, but let’s discuss the upper-right corner
first. Here, the robot board is similar or equal in capability
to the desktop workstation, and is running a full-fledged
operating system with adequate RAM, a disk or flash-
based file system, an installation of the gcc toolchain, etc.
Perhaps the only thing it may be lacking is a keyboard and
screen, so it may communicate via (e.g.) X-Windows with
the desktop workstation. A research robot such as the
ActivMedia’s Pioneer robot (which runs the Linux
operating system) takes this approach.

The “robot-is-a-Linux-computer” approach is obviously
powerful, but we will advocate a more minimalist design.

Rationally, we can make a cost argument—it will be
cheaper to build a smaller computer that can’t replace the
desktop. But our motivation is more aesthetic; we are
hoping to do a lot with a little, to create a platform that is
still simple and yet extremely capable.

So, let’s consider the middle column, which represents the
“sweet spot” in the diagram. Here, we have a robot
controller board that is much more powerful than an 8-bit
micro, but would be stretched to run a full operating
system such as Linux. There are two different software
development possibilities here.

In the approach indicated in center of the diagram, we
install a small operating system on the robot board, and use
a desktop cross-compiler as a development tool. For
example, the eCos operating system (eCos, 2004) provides
a boot loader, a driver framework, memory allocation,
thread management, file I/O, and a TCP/IP stack. Based
on these resources, users can develop their own code in C
or C++ using gcc on the desktop, and then compile, link,
download, and run their programs.

The other possibility is represented in the top box of the
middle column. The small OS is used as a foundation for
running a significant interpreted environment, such as Lisp
or Smalltalk, which hosts its own development environ-
ment. The OS provides needed services to these applica-
tions; the gcc toolchain is used to compile to build the
kernel of the interpreted environment.

These two development scenarios are then our targets for
the next generation Handy Board design. While not as
general as a full modern operating system, a board that can
support these two development modes would a vast
improvement over the existing design, and would provide
many opportunities for educators, students, and engineers.

Figure 3: Block Diagram of Handy-Arm Board

Atmel
AT91R40008
32-bit 66 MHz

ARM CPU

SRAM
1M – 4M bytes

Flash ROM
4M – 16 M bytes

Crystal Semi
CS8900

10BT Ethernet

Microchip PIC
(CPU for

sensor I/O)

Motor
Drivers

LCD
screen

Sensors Motors

Wireless
Bridge

HANDY-ARM

Serial comms

Some Implementation Details
In this section we present our current implementation plan,
illustrated in Figure 3. We welcome new ideas, criticism,
and any other input.

With “Handy-ARM,” we’ve already given away our choice
of CPU—the 32-bit ARM processor. The ARM is a highly
respected RISC processor family with a clean, orthogonal
instruction set, implementations from multiple vendors,
and a superb CPU-speed-to-power-consumption ratio.

The particular variant that we are evaluating (the 66 MHz
Atmel AT91R40008) includes 256K bytes of internal static
RAM, but for added flexibility, we plan to add between 1
to 4 Mbytes of external static RAM. This RAM, along
with the Atmel’s own, will be battery-backed. This feature
will be especially important when using an interpreted
development environment, which holds so much of its state
in RAM. It will also be useful for performing data
collection with the board.

With this battery-backed RAM, it would be possible to use
RAM exclusively for user code, but an external ROM
would still be required for a boot monitor. For maximum
flexibility, we plan between 4 and 16 Mbytes of external
flash ROM.

We plan TCP/IP communications capability by adding a
low-cost Ethernet chip, the Crystal Semiconductor
CS8900. This is an older chip that originally came into use
on 16-bit ISA bus cards for PCs. It is now popular as an
inexpensive and simple solution for adding Ethernet capa-
bility to embedded devices: Because it was designed for
the simple 16-bit PC world, it’s electrically easy to
interface, and open-source drivers for it are widely avail-
able for many operating systems (including eCos).

Wireless Ethernet will be possible using a consumer-grade
wireless Ethernet bridge device. (These presently retail for
about $60.)

We would prefer a more integrated wireless solution, but
the above plan is the most promising in terms of (1) driver
development time, and (2) long-term availability of the
components used in the design. Drivers are available for
certain specific wireless cards, but none of these cards
enjoys the ubiquity of the CS8900 device. We think the
CS8900 is a good bet for being available in the years to
come.

For the robot sensor and actuator I/O, we plan to use a
separate low-cost CPU (the Microchip PIC). This will
serve two purposes: (1) providing features that the Atmel
does not have, such as analog-to-digital (A/D) conversion,
and also (2) electrically isolating robot circuits from the
main processor. This second aspect is especially

important; if the design is done properly, voltage spikes
and other disturbances from the robot will not cause
hardware failures in the main CPU circuit. The I/O
processor will also interface with low-speed devices like an
LCD screen.

Closing Comments
Our controversial claim is that is more interesting to build a
smaller system than a fuller one. We could defend this on
cost grounds, but (even though this is a benefit) this is not
the strongest argument.

The reason to build a simpler system is precisely that it is
simpler. The result will be a design that is easier to
implement and easier to understand, as well as having
greater longevity and being less expensive.

Ease of understanding is a key quality of the existing
Handy Board, and is valuable both for its pedagogical
applications and practical engineering ones. When a
design is open and documented, students can learn by
understanding how circuits accomplish their work, and can
design extensions and advanced projects based on this
knowledge.

With the right design choices, a simpler design can be
more useful than a complex one.

References
eCos operating system, http://sources.redhat.com/ecos/
Hempel, Ralph. pbForth programming environment,
http://www.hempeldesigngroup.com/lego/pbForth/
Klassner, F. and Anderson, S., (2002). “LEGO MindStorms: Not
Just for K–12 Anymore,” IEEE Robotics and Automation, Special
Edition on Education-I, June 2003, v 9, no 2.
Martin, F. (1994). Circuits to Control: Learning Engineering by
Designing LEGO Robots, unpublished PhD dissertation, Massa-
chusetts Institute of Technology, Program in Media Arts and Sci-
ences, June 1994.
Martin, F. (2001). Robotic Explorations: A Hands-On Introduct-
ion to Engineering, Prentice-Hall.
Parallax, Inc (2004). Makers of the BASIC Stamp.
http://www.parallax.com/.
Ridgesoft (2004). RoboJDE Java-based software development
environment for the Handy Board. http://www.ridgesoft.com.
Sargent, R. (2004). Interactive C Software.
http://www.kipr.org/ic/.

