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Abstract— Programming mobile robots can be a long, time-
consuming process. Specifying the low-level mapping from sen-
sors to actuators is prone to programmer misconceptions, and
debugging such a mapping can be tedious. The idea of having
a robot learn how to accomplish a task, rather than being told
explicitly is an appealing one. It seems easier and much more
intuitive for the programmer to specify what the robot should
be doing, and to let it learn the fine details ofhow to do it. In
this paper, we introduce a framework for reinforcement learning
on mobile robots and describe our experiments using it to learn
simple tasks.

Index Terms— Mobile robots, machine learning, reinforcement
learning, learning from demonstration.

I. I NTRODUCTION

Programming mobile robots can be a very time-consuming
process. It often takes many iterations to fine-tune the low-
level mapping from sensors to actuators. It is often difficult for
a programmer to translate knowledge about how to complete
a task into terms that are useful for the robot. Robot sensors
and actuators are very different from those of humans, and
misconceptions about how they operate can cause control code
to fail. The idea of providing some high-level specification
of the task and using machine learning techniques to “fill
in the details” is an appealing one. It seems like it would
take less time to write this high-level specification and the
learned control policy, if it uses empirical observations of the
world, should less prone to programmer bias than hand-written
control code would be.

In this paper we briefly survey reinforcement learning, a
machine learning paradigm that is especially well-suited to
learning control policies for mobile robots. We discuss some
of its shortcomings, and introduce a framework for effectively
using reinforcement learning on mobile robots. We then go on
to give experimental results of applying this framework to two
mobile robot control tasks.

II. REINFORCEMENTLEARNING

Reinforcement learning (RL) is a machine learning
paradigm that is particularly well-suited for use on mobile
robots. It assumes that the world can be described by a set
of states,S, and that the agent (the robot in this case) can
take one of a fixed number of actions,A. Time is divided
into discrete steps. At each time step, the agent observes the
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state of the world,st, (which might include the internal state
of the robot) and chooses an action,at to take. After taking
the action, the agent is given a reward,rt+1 ∈ R, reflecting
how good, in a very short-term sense, that action was, and
observes the new state of the world,st+1. The goal of RL is
to take these experience tuples,(st, at, rt+1, st+1), and learn
a mapping from states (or states and actions, depending on the
particular algorithm used) to a measure of the long-term value
of being in that state, known as theoptimal value function.

The particular reinforcement learning algorithm that we use
in this work is Q-learning [1]. The Q-learning optimal value
function is defined as

Q∗ (s, a) = E
[
R (s, a) + γ max

a′
Q∗ (s′, a′)

]
.

This represents the expected value of the reward for taking
action a from states, ending up in states′, and then acting
optimally from then on. The parameterγ is known as the
discount factor, and is a measure of how much attention we pay
to possible rewards that we might get in the future. Once we
have the optimal Q-function,Q∗(s, a), it is easy to calculate
the optimal policy,π∗(s), by simply looking at all possible
actions from a given state and selecting the one with the largest
value,

π∗(s) = arg max
a

Q (s, a) .

The Q-function is typically stored in a table, indexed
by state and action. Starting with arbitrary values, we can
iteratively approximate the optimal Q-function based on our
observations of the world. Every time that the robot takes an
action, an experience tuple,(st, at, rt+1, st+1), is generated.
The table entry for states and actiona is then updated
according to

Q (st, at) ← (1− α)Q (st, at) +
α (rt+1 + γ maxa′ Q (st+1, a

′)) .

Under some reasonable conditions [1] this is guaranteed to
converge to the optimal Q-function,Q∗(s, a). One of the most
important features of Q-learning is that it is what is known as
an off-policy algorithm. This means that the distribution from
which the training samples are drawn has no effect, in the
limit, on the policy that is learned. This will prove to be very
important for our algorithm, as discussed below.

This description of Q-learning has been necessarily brief.
For much more comprehensive coverage, see the book by
Sutton and Barto [2] or the survey by Kaelbling, Littman and
Moore [3].



III. R EINFORCEMENTLEARNING ON ROBOTS

Reinforcement learning, and Q-learning in particular, seems
to be a natural choice for learning control policies on mobile
robots. Instead of designing a low-level control policy, we can
design a much higher-level task description in the form of the
reward function,R(s, a). Designing a sparse reward function
is generally easier than designing the low-level mapping
from observations to actions. Often, for robot tasks, rewards
correspond to physical events in the world. This makes is easy
to come up with simple reward functions for many tasks. For
example, for an obstacle avoidance task, the robot might get a
reward of 1 for reaching the goal, and -1 for hitting an obstacle.
In theory, this is all that is necessary for the robot to learn the
optimal policy. However, there are a number of problems with
simply using standard Q-learning techniques. We will call this
type of reward functionsparse. Sparse reward functions are
zero everywhere, except for a few places (the obstacles and
goal in the above example). The contrast withdensereward
functions, which give non-zero rewards most of the time. A
dense reward function for obstacle avoidance might be, for
example, the sum of distances to the obstacles divided by the
distance to the goal state. Dense reward functions give more
information after each action, but are much more difficult to
construct than sparse functions. In this work, we will mostly be
interested in sparse reward functions, since they are generally
much simpler to design.

One problem with RL on mobile robots is that the state
space description of mobile robots is often best expressed in
terms of vectors of real values, Q-learning requires discrete
states and actions. One approach to overcome this problem,
known as value-function approximation, replaces the tabular
representation ofQ(s, a) with a general-purpose function
approximator. However, it has been shown that this will not
work for general function approximators, even in seemingly
benign situations [4]. In previous work [5], [6], we presented
an algorithm, HEDGER, that addresses the problems associated
with value-function approximation. The algorithm is based on
the observation by Gordon [7] that a function approximator
can safely be used to replace the tabular value function
representation if it never extrapolates from its training data.
He showed that locally weighted averaging (LWA) is such
a function approximator. HEDGER uses a more powerful
function approximator, locally weighted regression (LWR) [8],
supplemented with extrapolation checks, for value-function
approximation. For every query, it checks to make sure that
the query point is within the training data that it has already
seen, and that the predicted value is within reasonable limits
(given the rewards observed). If the query is outside of the
training data, or the prediction is not reasonable, it returns a
prediction using LWA (which is guaranteed safe). Otherwise,
the prediction using LWR is returned. This algorithm has been
shown to learn faster than one based only on LWA, and to be
robust across a number of test domains [6].

In all of the work presented here, we use HEDGERas part of
our Q-learning implementation. Previous work has generally
solved this problem either by using domain knowledge to
create a good discretization of the state space [9] or by
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Fig. 1. The two learning phases.

hierarchically decomposing the problem by hand to make the
learning task easier [10].

The other main problem is that of incorporating prior
knowledge into the learning system. The only way that Q-
learning can find out information about its environment is to
take actions and observe their effects. In the early stages of
learning, the system knows nothing about the environment,
or how to act in it. It is, therefore, forced to choose more-
or-less arbitrary actions. As more information, in the form of
rewards,R(s, a), arrives, Q-learning can iteratively improve
its approximation of the value function. However, if no re-
wards are observed, the value function approximation will
never change. This problem is compounded by sparse reward
functions. If there are only a few rewards, and the state-action
space is large, the chances of finding a reward by chance are
very small indeed. In section IV, we introduce a framework
for RL on robots that addresses this problem.

IV. T HE LEARNING FRAMEWORK

One of the major hurdles to implementing RL systems on
real robots is the inclusion of prior knowledge in the learning
system. Using a sparse reward function, and without some
prior knowledge of the environment, the learning system is
almost certainly doomed to fail. Our solution to this problem
is to supply example trajectories to the learning system and
split learning into two phases.

In the first phase of learning, shown in figure 1(a), the
robot is being controlled by a supplied control policy. This can
either be actual control code, or a human directly controlling
the robot with a joystick. During this learning phase, the RL
system is passively watching the states, actions and rewards
that the supplied policy is generating. It uses these rewards to
bootstrap information into its value-function approximation.

The key element of this phase is that the RL system is
not in control of the robot. At this point, we assume that
the value-function approximation is not complete enough to
adequately control the robot. The rôle of the supplied control
policy is to expose the RL system to the “interesting” parts
of the state space, those parts where the reward is non-zero.
It is important to note that we are not trying to learn the
trajectories generated by the supplied policy, but simply using
the to generate experiences with which to bootstrap the value-
function approximation.



Once the value-function approximation is complete enough
to control the robot effectively, the second learning phase
starts. In this phase, shown in figure 1(b), the learned policy
is in control of the robot, as it would be in a standard RL
implementation. If the supplied control policy is a piece of
software (as opposed to direct human control), it can be kept
running in the background to offer advice on control decisions
if needed.

By splitting the learning into two phases, we gain the ability
to bootstrap information into the value-function approximation
before committing to using the learned policy to control
the robot. This allows us make sure that, once we move
to the second learning phase, the robot will be capable of
finding reward-giving states, and that learning will not stall.
By observing the example trajectories, we remove the need to
know about the robot sensor and actuator systems in detail.
If phase one learning is done by direct control of the robot,
the human controller does not need to know anything about
sensor systems, inverse kinematics or reinforcement learning.
Lin [11] used a similar method to bootstrap information
into the value function, but relied on hand-coded sequences
of experiences. This requires detailed knowledge about how
the robot moves and how the sensors work. If any of this
knowledge is incorrect, or based on faulty assumptions, the
learning system will fail to produce the desired results. By
observing actual trajectories through the state-action space, we
are learning from empirical data, and are not subject to our
own biases.

This sort of learning by demonstration has become quite
popular recently [12], with the robots generally trying to learn
the inverse kinematics of a task by observation [13]. The
closest work to that reported here is by Lin [11], who used
example trajectories to accelerate learning. However, these
trajectories were assembled by hand and required a detailed
knowledge of the robot dynamics and sensor systems. Our
approach differs in the fact that we use the robot itself, under
human guidance, to create the example trajectories from which
the RL system learns.

V. EXPERIMENTAL RESULTS

In this section, we present the results of using our frame-
work to learn control policies for two simple robot tasks,
corridor following and obstacle avoidance. The experiments
were carried out on a Real World Interface B21r mobile robot.
The robot has a synchronous-drive locomotion system and can
rotate about its axis, and translate forwards and backwards. In
all of the experiments reported here, the translation speed was
either controlled by a fixed policy (for corridor following) or
constant (for obstacle avoidance). Our goal is to learn a good
policy for setting the rotation velocity of the robot.

The robot uses a scanning laser range-finder to identify
walls and obstacles in the world. Higher-level features, de-
scribed below, are computed from the raw laser information
and used as inputs to the control system.

Every five training runs, learning was temporarily disabled,
and the performance of the learned policy was evaluated.
These evaluation runs were started from ten pre-specified
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starting poses. Our evaluation metric is number of steps taken
to reach the goal state. The performance graphs below show
the average number of steps to the goal, along with the 95%
confidence bound on this average. Training runs were also
started from a variety of poses similar to, but not the same as,
those used for evaluation.

In all of the experiments presented here, the RL learning
rate,α, is set to 0.2. In the corridor following experiments, the
discount factor,γ, is set to 0.99, and in the obstacle avoidance
experiments it is set to 0.9.

A. Corridor Following

The corridor following task is shown in figure 2. The
translation speed,vt, of the robot is controlled by a fixed policy
that causes it to move quickly when it is in the middle of the
corridor and more slowly as it gets closer to a wall. The state
space of this problem has three dimensions, the distance to
the end of the corridor, the distance from the left-hand wall as
a fraction of the total corridor width and the angle to a target
point, shown in figure 3. The angle to the target point,θ is

θ = tan−1 20
d

+ φ− π

2
.

We found that using the angle to a moving target point like
this resulted in much smoother behavior than using the angle
that the robot heading made with the corridor. The robot gets
a reward of 10 for reaching the end of the corridor, and a
reward of zero in all other situations.

Figure 4 shows the performance of the framework using
a simple control policy for phase one learning. The supplied
policy was a simple proportional controller

vr = αθ.

The value of the gain,α, was varied from run to run in order to
generate a wider range of experiences for the learning system.
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As can be seen from the figure, the performance of the learned
policy improves with more experience. After 30 phase one
training runs, the performance is significantly better (at the
95% level) than that of the shortest phase one training run
(labelled “best example” in the figure).

After 30 phase one training runs, the learned policy was
deemed to be competent enough to take over control of the
robot. The first evaluation, after five phase two training runs, is
worse than the last phase one evaluation. After this, however,
the performance of the learned policy continues to improve.
We have noticed this behavior in many domains, just after
the change in learning phases. During phase one learning, the
experiences generated by the example trajectories are likely to
be fairly predictable. Thus, the number of novel experiences
per run that he learning system must cope with is relatively
small. However, after the phase transition, when the learned
policy is in control, a greater number of novel experiences
seem to be generated. This causes a temporary decrease in
performance until the learning system has time to integrate
the new data properly.

After 35 phase two training runs, the performance of the
learned policy is indistinguishable (at the 95% level) from
the best that one of the authors could achieve by directly
controlling the robot with a joystick (labelled “optimal” in the
figure). The confidence bounds on the average performance
also narrow with more training. This corresponds to the
performance of the robot becoming more predictable across
different starting poses.

Figure 5 shows the performance of the framework on a
another corridor following task. This time, however, phase

one training was done by directly controlling the robot with a
joystick, instead of using an hand-coded example policy. The
corridor used in this experiment is longer than in the previous
one, so the best possible performance will be different. Again,
the graph shows the average and shortest training runs used
during phase one, and the best one of the authors could do.
The phase one training runs are all longer than this “optimal”
value because no attempt was made to make them “good”
examples. In fact, the robot was driven quite sloppily during
phase one and, although it eventually reached the goal the path
was often far from the shortest possible.

The basic profile of the performance is similar to that shown
in figure 4, with two notable exceptions. There are fewer phase
one training runs, and the performance improvement in phase
one is much more rapid than in phase two. These are caused
by the nature of the training data generated. The experiences
generated by a human driving the robot are much more varied
than those generated by an example control policy. This variety
of training data means that our framework is able to generalize
more effectively, which tends to lead to better performance in
new situations.

As with the previous set of experiments, the slight perfor-
mance decrease just after the learning phase change is evident.
The final performance is, again, indistinguishable from the best
that one of the authors could do by directly controlling the
robot.

To see how effective phase one training is, in terms of
time spent, we also ran some simulations of the corridor
following task. Since we are dealing with a sparse reward
function, learning time is dominated by the time taken to
reach a reward-giving state for the first time. We simulated
a robot in a corridor 10m long, approximately the length of
the corridor in the first set of experiments described above,
and timed how long it took to get to the reward states at
the end of the corridor. The simulated robot had the same
translation speed policy as in the real experiments, and used
the idealized forward model for synchronous-drive systems.
For each set of experiments, we started the robot in the middle
of the corridor, pointing in a random direction in the half-
circle towards the goal. In each set of experiments, we limited
the magnitude of the rotation velocity,vr (in the real robot
experiments,−1 ≤ vr ≤ 1). Actions were chosen from
a uniform distribution over the appropriate range. Figure 6
shows the results from these simulations. The fastest that
the simulation was able to reach the goal was slightly over
two hours. Although it can be argued that a more informed
action selection policy could do better, we are assuming that
a standard RL approach will not have such domain-specific
knowledge. In this case we are forced to take more-or-less
arbitrary actions. In both of the real robot experiments reported
above, all of the training was accomplished in approximately
two hours. Since figure 6 shows the time until thefirst reward
is found, it is clear that using phase one learning offers a huge
time saving for this task.

B. Obstacle Avoidance

The obstacle avoidance task that we used is shown in
figure 7. The translation speed,vt, of the robot is fixed, and



2

4

6

8

10

0.2 0.4 0.6 0.8 1

Ti
m

e 
(h

ou
rs

)
Time to Reach Goal

Max Rotation Speed (rad/s)

Fig. 6. Performance on the simulated corridor following task.

Target Point

Reward Region

Obstacles

Starting Point

Fig. 7. The obstacle avoidance task.

we are trying to learn a policy for the rotation speed,vr.
The goal is to have the robot drive to the goal state, while
avoiding the obstacles in the environment. A reward of 1
is given for reaching the goal, a reward of -1 is given for
colliding with an obstacle and a zero reward is given in all
other situations. An experimental run terminates when the
robot either reaches the goal, or hits an obstacle. The inputs to
the learning system are the direction and distance to the goal
state and the obstacles, as shown in figure 8. The robot is
started in a random pose approximately three meters from the
goal point for each experimental run. Our performance metric
is the number of time steps needed to reach the goal state. In
all of the experiments reported in this section, one obstacle
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was used and example trajectories were generated by direct
joystick control of the robot.

The obstacle avoidance task is somewhat more difficult than
corridor following. The robot is contained by the walls of
the corridor and constrained by the dynamics of the robot.
It is relatively difficult for it to get seriously lost, and to
start driving down the corridor in the wrong direction. This
means that it will (eventually) reach the reward-giving state
at the end of the corridor in most experiments. However, in
the obstacle avoidance task, there is no such help from the
environment. In fact, policies that are almost perfect might
just miss the goal state, and be unable to recover. This is
reflected in figure 9, which shows the number of evaluation
runs (out of ten) that actually manage to reach the goal state.
Notice that th framework must see fifteen phase one example
trajectories before it is capable of reaching the goal on its own.
However, once it can find the goal state from one evaluation
starting position, it quickly learns to reach it from all of them.
As before, notice the slight performance decrease just after
the change in learning phases.

For those evaluation runs that were able to reach the goal,
figure 10 shows the average number of steps taken. The
performance increase in the first learning phase is much



Starting distance
1m 2m 3m

Successful 46.2% 25.0% 18.7%
Time (hours) 2.03 6.24 6.54

TABLE I

PERFORMANCE ON THE SIMULATED OBSTACLE AVOIDANCE TASK.

more dramatic than in the second phase. This is similar
to the previous task when direct control is used for phase
one training. Again, the final performance is not significantly
different (at the 95% level) from the best that the authors could
achieve with direct control of the robot. As with the corridor
following task, the total time to reach the final performance
level shown in figure 10 was approximately two hours.

As before, we ran a simulation of this task to see how
long it would take the robot to reach the goal state without
the benefit of phase one training. The robot was started at
various distances from the goal state, pointing straight at it.
No obstacles were present and rotation velocity,vt, was chosen
according to a normal distribution with mean zero and variance
0.05. Table I shows the number of runs that reached the goal
within one week of simulated time, and the average time
that these successful runs took. When starting at the same
point as the real robot, less than one run in five was able
to reach the goal state. Even those that did took an average
of approximately six and a half hours. This is longer than
the battery life of our robot. This demonstrates the necessity
of example trajectories and phase one training when using
reinforcement learning on a real robot.

VI. CONCLUSIONS

In this paper we have presented a framework for using
reinforcement learning on mobile robots. The main feature
of the system described in the paper is the use of example
trajectories to bootstrap the value-function approximation, and
the splitting learning into two phases. In the first learning
phase, the robot is under the control of an example solution for
the task, or is controlled directly by a human. The reinforce-
ment learning system passively observes the states, actions and
rewards encountered by the robot, and uses this information to
bootstrap its value-function approximation. Once the learned
policy is good enough to control the robot, the second phase of
learning begins. The RL system is in control of the robot, and
learning progresses as in the standard Q-learning framework.

Using example trajectories through the space allows us to
easily incorporate human knowledge about how to perform
a task in the learning system. The human guiding the robot
does not need to know about the sensor and effector systems,
or about reinforcement learning. They do not even have to
show the robot the best solution for the task. In the exper-
iments presented here, the final performance levels for both
of the tasks are significantly better than any of the example
trajectories used during phase one training. This underlines
the point that we are not learning the trajectories that we are
shown but are simply using them to generate experience that
is then used by the reinforcement learning system.

Finally, the framework is capable of learning good control
policies more quickly than moderately experienced program-
mers can hand-code them, at least for the tasks that we looked
at. Anecdotally, we have observed that novice programmers
can take up to a week to write a good wall-following program.
In the experiments above, we managed to learn a good policy
in approximately two hours.

We believe that our framework shows the promise of using
RL techniques on real robots. However, there are still many
open questions. How complex a task can be learned with
sparse reward functions? How does the balance of “good” and
“bad” phase one trajectories affect the speed of learning? Can
we automatically determine when to change learning phases?
We are addressing these questions in our current work.
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