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Abstract--Multi-robot teams can improve safety and
increase human productivity for operations in hazardous
environments. To be effective, a control scheme is needed
to decompose a task, assign subtasks to individual robots,
and synchronize execution. We have developed a market
model for this control scheme that realizes the best of both
centralized and distributed approaches. In the market
approach, robots coordinate opportunistically to meet
team constraints and to optimize the team solution. In this
paper, we illustrate how the market is used to coordinate
at the task decomposition, assignment, and execution
phases, depending on the requirements of the given appli-
cation. We present results from simulation and from actual
robots for the applications of mapping, area reconnais-
sance, and perimeter sweeping.

I. INTRODUCTION
Mobile robots are useful tools for inspection, mainte-

nance, and clean-up of hazardous environments. Robots
minimize human exposure to hazardous agents and can
increase a human’s productivity through semi-autonomy.
Multi-robot teams further increase productivity through
execution concurrency. Moreover, they make it possible to
perform more complex tasks that require a heterogeneous
group of specialists, such as assembly or material han-
dling.

In order to perform a task with a team of mobile
robots, three operations must be performed. First, the task
must be decomposed into subtasks that can be executed by
individual robots. Second, the subtasks must be assigned
to the robots. Third, the subtasks must be interconnected
and synchronized so that constraints are satisfied and the
execution of the entire team task is optimized. 

One approach to the problem is to use a centralized
decision maker [1] [2] that decomposes the task, assigns
subtasks, and dictates how synchronization will occur. The
advantage of this approach is that it is optimal. The disad-
vantages are that it is intractable for many problems and
sluggish to change or unexpected situations. Another
approach is to fully distribute the system [3] [4]. In this
approach, each robot decomposes the task as it sees fit,
performs part of it, and at most minimally synchronizes
with the other robots. The advantage of this approach is
that it is flexible and robust to change. The disadvantage is
that it is suboptimal, since several robots can perform the
same subtask, and some robots end up performing sub-
tasks better suited for other team members.

To realize the best of both approaches, we have devel-
oped a market based approach for multi-robot teams called

Traderbots [5] [6]. In this approach, the robots are paid
revenue for accomplishing subtasks and incur costs for
consuming team resources. The robots bid on subtasks,
attempting to maximize their revenues and minimize their
costs. The robots seek to maximize their individual profits,
leading the team toward the most cost effective solution.
This effect occurs because a robot can increase its profit by
computing a better team solution and using part of the cost
savings to buy team participation. The market behaves
more like a centralized system when ample time, comput-
ing resources, and good intra-team communication permit.
In these cases, individual robots compute optimal solutions
to the entire team task or to large parts of the task and bid
them off against alternative plans produced by their team
mates. The market behaves more like a distributed system
when time is short, computing is limited, and communica-
tion is sparse. In these cases, individual robots perform
simple decompositions and subtask assignments that are
globally suboptimal but still accomplish the team task.

We have applied the market approach to a number of
tasks, including mapping, reconnaissance, and perimeter
sweeping. As noted above, the robot team can typically
improve the efficiency of its solution through intra-team
coordination. The type and granularity of coordination
possible is heavily dependent on the application. For
example, consider the task of efficiently mapping a build-
ing by minimizing the sum of the distances travelled by all
of the robots. For this problem, the subtasks are just por-
tions of the map to build. Each subtask is performed by a
single robot. The robots need to coordinate only to deter-
mine which robot should map which portion of the build-
ing. Thus, coordination at a coarse scale, for the
assignment of independent tasks, is sufficient.

For other applications, more than one robot is needed
to perform a given subtask. For example, in an assembly
task, one robot needs to hold one component while another
robot attaches another component. In area reconnaissance,
multiple robots may be needed to simultaneously observe
an area of interest. Alternatively, a task may be so complex
that intermediate levels of task decomposition are needed,
perhaps for assigning subtasks to a subset of the robots.
Thus, robots must coordinate in order to jointly assume
responsibility for a given subtask.

Still other applications require coordination in a tight
manner even after the task has been decomposed and
assignments have been made. For example, consider a
team of robots conducting a security operation using an
expanding perimeter. The robots must sweep through an
area while ensuring that all points along the perimeter can
be seen by at least one robot at all times. For this problem,



the team must coordinate at every step to prevent occlu-
sions in the perimeter that would enable an adversary to
enter the secured area undetected. Thus, the robots need to
coordinate during execution of their subtasks.

This paper describes how to apply the market
approach to multi-robot control for a variety of applica-
tions with different types and granularity of coordination.
Section II describes our first formulation, Traderbots,
applied to the mapping problem. Section III extends Trad-
erbots to handle more complex problems, such as area
reconnaissance, where multiple robots are needed to solve
a given subtask. Section IV explores coordination in the
subtask execution phase that enables tightly-coupled
applications such as perimeter sweeping.

II. INDEPENDENT TASK DECOMPOSITION
Many tasks such as mapping an unknown area, dis-

tributed sensing tasks, etc., can be accomplished more
efficiently if the task is decomposed into independent sub-
tasks and executed by different robots in parallel.   This
coordination granularity is coarse because all required
coordination occurs in the task decomposition stage and
none in the task execution stage.   In the TraderBots
approach [5] [6], coordination of task allocation is accom-
plished through trading.

II.A. Auctions and Clustering
Trading is a key component of the TraderBots

approach. A “RoboTrader” agent assigned to each robot is
responsible for opportunistically optimizing the tasks the
robot commits to executing. An “OpTrader” agent serves
as an interface between the operator and the robot team.
Each trader maintains a portfolio in which it keeps track of
its commitments, schedule, currently executing tasks, and
tasks it trades to others. Two forms of contract types are
allowed during trading: subcontracts and transfers. If the
contract type is a subcontract, it implies the auctioneer is
interested in monitoring the progress of the task and will
hence expect a report when the task is completed; payment
is made only after the subcontracted task is completed. If,
on the other hand, the contract type is a transfer, payment
is made as soon as the task is traded, and no further com-
munication concerning that task is necessary between the
auctioneer and bidder. Each trader has an internal alarm
that prompts it to auction all tasks in its schedule periodi-
cally. Note that tasks under execution are removed from
the schedule and hence cannot be traded. 

A trader initiates an auction by sending out a call for
bids. Traders that are within communication range com-
pute and submit bids to this auction. Once the specified
deadline expires, the auctioneer resolves the call by mak-
ing an allocation based on the bids it received. If a trader
receives an award for a bid it submitted, it accepts or
rejects that award based on its current state. Note that an
award is binding after it has been accepted. Two methods
of call resolution are used in the current implementation of
TraderBots. The RoboTraders award at most the single
most profitable bid submitted to the auction. The
OpTrader uses a greedy algorithm for resolving calls so

that tasks are allocated more rapidly and team execution
begins. The greedy algorithm assigns the most profitable
bid submitted by each trader for each task while ensuring
that no task is assigned more than once and no bidder is
assigned more than one task during each auction. In order
to participate in an auction, robots need to calculate the
costs of tasks. A robot announcing an auction must deter-
mine its reservation price, i.e. the highest price it is willing
to pay to subcontract or purchase a task. A robot bidding in
an auction must calculate the expected cost of the tasks
being offered. These valuations are based on marginal
costs – the difference in between the cost of the current
schedule with those tasks and the cost of the schedule
without those tasks. For a single task, an auctioneer’s valu-
ation is the savings resulting from removing that task from
its schedule. A bidder’s marginal cost for a single task is
the estimated cost of inserting the task into its schedule. 

Further optimization can be introduced through the
development of a “leader” role that allows a robot with the
necessary resources to assess the current plans of a group
of robots and provide more optimal plans for the group.
The leader can gain knowledge of the group’s current state
via communication or some form of observation. A pro-
spective leader can use the profits generated by an opti-
mized plan to bid for the services of the group members,
and retain a portion of the profit for itself. The leader may
bid not only against the individuals’ plans, but also against
group plans produced by other prospective leaders. Note
there are many ways in which the leader can reduce the
cost within the group (and thereby the global cost). Lead-
ers can use different mechanisms to re-distribute tasks
among the group and even generate new tasks to coordi-
nate the group more efficiently. 

The capability to negotiate multi-task deals greatly
enhances the market approach because it allows a robot to
escape some local minima in task allocation solutions.
However, if the robots bid on every possible combination
of tasks, the number of bids submitted will grow exponen-
tially with the number of tasks. Consequently, processing
these bids will be impossible for more than a few tasks.
Hence, some form of a clustering algorithm is necessary to
determine the groups of tasks on which to bid, and some
form of auction-clearing algorithm is required to process
multi-task bids. A leader can provide these capabilities to
robots that cannot reason about clusters. A combinatorial
exchange (a market where many bidders can jointly buy
and sell a combination of goods and services within a sin-
gle bid) can be another instantiation of a leader that
enables multi-party optimizations for a team. A combina-
torial exchange enables a leader to locally optimize the
task assignments of a subgroup of robots and to potentially
achieve a greater global cost reduction. Many researchers
have presented valuable insight on how to efficiently
implement and clear combinatorial exchanges for E-com-
merce applications [7].

II.B. Experimental Results
We validated the TraderBots approach using a distrib-

uted map-building application. This translates into a ver-
sion of the traveling salesman problem (TSP) with the



robots being represented by multiple salesmen following
paths instead of tours (i.e. without the requirement that
robots need to return to their starting locations) and where
all the robots can start from different base locations. This
is known as the multi-depot traveling salesman path prob-
lem (MD-TSPP). The tasks can be modeled as cities to be
visited where the costs are computed as the time taken to
drive between cities. A task is completed when a robot
arrives at a city. The global task is complete when all cities
are visited by at least one robot. The global cost is com-
puted as the summation of the individual robot cost, and
the goal is to complete the global task while minimizing
the number of robot-hours consumed. Each robot is
responsible for optimizing its own local schedule. 

Figure 1: The mapping application was implemented using a
team of Pioneer robots equipped with laser rangefinders. The
scene depicts the area mapped during the experiments. Note that
the environment is very cluttered.

Figure 2: An overhead view of the area mapped. The dark areas
are open space; the light areas are structures in the environment;
the gridded areas are unsensed.

The mapping application was implemented using a
team of Pioneer II-DX robots equipped with SICK laser
rangefinders oriented to scan horizontally. Figure 1 shows
the robots and the area mapped, which was quite cluttered.
Figure 2 shows an overhead view of the area mapped. The
dark areas are open space; the light areas are obstacles,
walls, and other structures; the gridded areas are unsensed.

Further implementation details are reported in earlier pub-
lications ([8], [9]). 

III. COORDINATED TASK DECOMPOSITION
For some problems, robots need to coordinate to

decompose a task into subtasks that are executed by more
than one robot. For example, in an area reconnaissance
scenario, robots need to jointly cover a region composed
of several named areas of interest (NAI), which may be
accomplished by visiting multiple observation points
(OPs). At one level of abstraction, robots can jointly exe-
cute area coverage tasks. However, at a lower level, the
execution of the individual OP subtasks does not require
coordination. We present a task tree-based market mecha-
nism, in which robots coordinate both task decomposition
and task allocation, to arrive at efficient solutions to com-
plex tasks for a mid-range level of interaction.

III.A. Task Tree-based Market Mechanism
Coordinated task decomposition is achieved by participat-
ing in a task tree market [10]. Within the market, contracts
are sold for executing trees of tasks which represent com-
plex tasks at variable levels of abstraction. An example
task tree is shown in Figure 3. At the root of the tree is an
abstract task, and at each successive level of the tree the
tasks are further refined into more primitive tasks. Con-
structing a task tree involves performing a task decompo-
sition on an abstract task. The tree of Figure 3 is an AND/
OR tree, meaning that subtasks are related to their parent
tasks through one of the logical connectives AND or OR.
If a parent node contains an AND operator, this implies
that all of its children must be performed to satisfy it. An
OR operator implies that at least one of the child tasks
must be completed to satisfy the parent. In Figure 3, an
area reconnaissance mission is decomposed into two
NAIs, each of which is decomposed into two alternative
plans that involve visiting multiple OPs.

Figure 3: An example task tree for an area reconnaissance
scenario with two areas. The solid edges represent AND
operators, and the dashed lines represent OR operators. Note that
for the cover area tasks, there are two alternative decompositions
specified in the tree.



The task tree market enables a team of robots to buy
and sell their roles in performing joint subtasks. A robot
can offer a task tree on the market by holding an auction,
and other robots can bid on parts of the tree.   Robots with
lower costs for specific subtrees can bid on those tasks.
The auctioneer awards subcontracts for the subtrees that
result in the greatest improvement of its individual cost,
which translates to a decrease in global solution cost. A
bid for a primitive task is simply the expected marginal
cost of executing the task. A bid for an abstract task can
represent one of two quantities. The first is the marginal
cost of minimally satisfying the plan represented by that
tree node. For an AND task, this amounts to the cost of
performing all of the subtasks of that node, while for an
OR task, the cost is the minimum cost of performing one
of the child tasks. The second way a robot can bid for an
abstract task is by computing its own decomposition of the
task. If the resulting decomposition is of lower cost than
the plan on offer, then the robot can use that cost as its bid.
In this case, the robot is essentially offering a new plan for
a task, rather than just agreeing to execute it as offered. If
the robot wins the abstract task, it may use its new decom-
position to execute it. A fast clearing algorithm attempts to
find the minimum-cost task allocation while obeying the
constraints of the tree structure. Auctions can proceed in
rounds, so subtrees may be distributed among the robots in
any arbitrary manner; but in each round the global solution
cost decreases monotonically.

Perhaps the best way to illustrate the mechanics of the
task tree market is through a simple example. Figure 4 dis-
plays a series of auctions for an abstract cover area task.
At the bottom of each subfigure is a geometric representa-
tion of the task. The large square shows the area to be cov-
ered, and the labeled points are observation points from
which the area can be viewed to achieve the required cov-
erage. The edges between the tasks are labeled with the
costs of navigating between the points. At the top of each
subfigure is a task tree representing the current decompo-
sition of the task, labeled with the task prices. The cover-
age task may be a subtask of some larger global mission.
On the center-right of each image is the global cost of the
current solution.

In the example, the area coverage task is initially allo-
cated to robot R1. The decomposition and the plan of R1 is
shown in Figure 4(a). The total cost of this plan is $40,
which can be incurred by R1 navigating to goal point b
followed by goal point a. Suppose R1 now holds a task
tree auction for the coverage task, and there is another
robot, R2, within communications range which decides to
bid on the task tree. In Figure 4(b), R2’s travel costs and its
valuation of R1’s plan are shown. R2’s costs are higher
than R1 for all three tasks in the tree, so with this bid, R2
would not be awarded any tasks. However, as Figure 4(c)
illustrates, R2 computes a different decomposition (with
observation points c and d) and then bids on the area task
based on the new plan. In this case, R2 can complete the
coverage task for a lower cost ($25), and thus is awarded
the task tree by R1 (Figure 4(d)). By holding this auction,
the global solution cost has dropped from $40 to $25.
Figure 4(e.) shows that the solution can be improved even

further if R2 holds another auction round, and a third
robot, R3, wins task c which reduces the global solution
cost to $21.

Figure 4: Simple example of a task tree auction for an area
coverage task. (a) R1 holds a task tree auction. The initial plan of
R1 is displayed along with R1’s reserve price for the task tree. (b)
R2’s valuation of R1’s tree, without replanning. (c) R2 comes up
with a different decomposition for the cover area task, and
updates its bid accordingly. (d) The auction is cleared. R2 is
awarded the abstract area coverage task. R2’s new plan is shown
along with the associated task tree decomposition. The global
solution cost has been reduced from $40 to $25. (e) R2 holds
another auction round, which results in task c being
subcontracted out to R3. The global solution cost has been further
reduced to $21.

(a) top left
(b) top right
(c) middle left
(d) middle right
(e) bottom left



III.B. Experimental Results
The task tree market has been implemented on a team

of Pioneer II-DX robots [9]. Figure 5 shows a map created
by a team of two robots performing an area reconnais-
sance task requiring coverage of three NAIs. All tasks are
initially assigned to the robot on the left. An auction
results in NAI 1 being subsequently subcontracted to the
other robot, who then re-decomposes the task and achieves
the required coverage.

Figure 5: Map created during an area reconnaissance mission
performed by two robots in an indoor hallway environment.
Three areas of interest (numbered, shaded rectangles) are
covered by two robots (dark triangles) by visiting observations
points (marked with x’s). Paths taken by the robots are shown in
white. The grid cells are spaced 1m apart. Also shown in the
upper right is the task tree representing the mission. The top two
levels are given as input to the robots, who then generate the leaf
tasks automatically using task decomposition.

IV. COORDINATED TASK EXECUTION
Some tasks require even tighter coordination, particu-

larly during the execution stage. Consider the problem of a
group of robots jointly lifting and moving heavy objects.
The robots must lift an object securely and move together
to prevent it from falling, while also avoiding obstacles
and planning paths. In this and similar tasks, the effect of
an action taken by one robot greatly depends upon the
actions of other team members. To successfully complete
the task, robots must coordinate at every step of task
decomposition, planning, and execution, resulting in a
very fine granularity of interaction [11].

IV.A. Execution Through Repeated Planning
When planning, a robot searches out to some planning

horizon T for the sequence of actions that generates the
most profit. Here, T is a fixed number of time steps into
the future. Once it chooses a plan, it executes the plan up
to some execution horizon t, where . It then repeats
the process, incorporating any new information gained
since the last planning step.

Larger values of T mean that a robot generates plans
farther into the future. Thus, because the profit expected
from a plan depends on other robots’ actions (which may
be unknown), the uncertainty associated with the profit

t T≤

estimate increases. At the same time, longer plans are less
likely than shorter plans to trap the robot in local minima.
Larger values of t mean that a robot is more committed to
its plans, reducing the uncertainty it creates in other robots’
profit estimates. However, the robot also updates its plans
less frequently and may be sluggish in responding to
important changes in the environment. In this section, we
examine the trade-off between longer and shorter horizons
to find the planning strategy that works best for tight coor-
dination.

Often robots perform reasonably well by coordinating
implicitly or reactively: each robot chooses the plan that
appears most profitable based on some assumptions about
other robots’ actions. For example, a robot may assume
that every plan generated to horizon T will be completely
executed. Alternately, it may assume that only some por-
tion of every plan will be executed. A robot then updates
its own plan to accommodate changes in other robots’
plans and actions, but it will not actively influence them.

In this scheme robots cannot guarantee each others'
actions. Consequently, they may pass on high-profit plans
that require commitments from other robots for less-profit-
able ones that are more robust to unexpected behaviors.
They can overcome this difficulty by explicitly coordinat-
ing. A single robot R can solve for coordinated plans to
horizon T to be carried out in lock-step by itself and other
robots. If such a coordinated plan is more profitable than
the best reactive plan by some margin M1, it may suggest
this plan to other robots. If it is also more profitable for all
other robots, they will mutually agree to execute this plan
to horizon t. Alternately, suppose it creates a loss of M2 for
some subset of the robots. If , then R can offer to
compensate for the loss with some portion of M1, creating
a profitable situation for all robots. Again, the robots will
agree to execute this plan to horizon t.

IV.B. Experimental Results

Consider a group of robots providing an advancing
security perimeter by sweeping out an area with their sen-
sors as they move. The robots are instructed not to create
any blind spots along the perimeter that would allow a foe
to enter the secured area. The task is easy in an open area
but more difficult when there are obstacles present that
occlude the line of sight. Robots must tightly coordinate
with their neighbors to breach obstacles without breaking
the perimeter.

For this problem, a robot receives compensation pro-
portional to the change in coverage its actions create. To
accurately assign credit, this change is evaluated at every
time step and under the assumption that other robots
remain stationary over the interval. Moreover, two robots
are equally penalized for every time interval that the
perimeter between them is broken. The most profitable
paths maximize the area gained and minimize the number
of perimeter breaks.

M1 M2>



Figure 6: Successful coordination strategies in different
environments. (a) Simple environment where implicit
coordination is sufficient. (b) Complex environment where
explicit coordination naturally results in greater profits for both
robots. (c) Complex environment where explicit coordination
enables one robot to buy the participation of another.

Figure 6 illustrates the differences between explicit
and implicit coordination. In each figure robots Ra and Rb
are depicted as black circles and the obstacles are solid
gray rectangles. The perimeter between the robots and
their adjacent neighbors is outlined in dotted black and the
area they have secured is shaded in black. To advance the
perimeter, the robots need to move down and engulf the
obstacles. Robots assume that others are not reliably com-
mitted to their plans. So, they consider all the possible
actions others could take when searching for the optimal
path.

In Figure 6(a), robots Ra and Rb find that paths Pa1
and Pb1, respectively, have the greatest expected profit.
These paths are optimal because they enable the robots to
breach the obstacle without breaking the perimeter while
also maximizing the area secured with each step. In simple
environments such as this, implicit coordination is suffi-
cient.

Figure 6(b) presents a more complex environment.
Paths Pa1 and Pb1 maximize the area secured for Ra and
Rb, respectively. However, this arrangement enables a foe
to enter the secured area undetected through the channels
shaded in light gray. The perimeter remains intact only if
the robots follow paths Pa2 and Pb2. Consider the sce-
nario from Rb’s perspective. If Ra follows path Pa2, Rb’s
best course of action is to follow Pb2 (it incurs a small
area loss but avoids the larger cost of breaking the perime-
ter). However, if Ra follows Pa1 and Rb follows Pb2, they
will still incur a penalty for breaking the perimeter, but Rb
will also incur the additional area loss. Consequently,
without knowing Ra’s actions for certain, Rb determines
that Pb1 has the greatest expected profit and follows it. Ra
does the same computation and follows Pa1, leading to a
suboptimal solution. However, if either robot searches for
a coordinated plan, it will discover that following Pa2 and
Pb2 will naturally result in larger profits for both. They
can then select and execute this joint plan.

(a) top left
(b) top right
(c) bottom

In Figure 6(c), the robots are barely within their sen-
sor range (noted by the intersecting circles) and approach
the maximum area they can secure. The solid arrows show
the path with the greatest expected profit for each robot.
Pb1 is the best option for Rb because, although it creates a
break in the perimeter, Rb’s movement is too restricted by
Ra to follow Pb2. However, if Rb searches for a coordi-
nated plan, it will discover that it can follow Pb2 if Ra fol-
lows Pa2 and thus avoids the high cost of breaking the
perimeter. Although Pa2 is somewhat less profitable for
Ra, Rb can offset the loss with its profits, making the
arrangement more desirable for both robots.

We have implemented the task in simulation on a
group of eight robots coordinating implicitly but not
explicitly. The robots assume that their neighbors are fully
committed to the plans they declare. Figure 7(a) illustrates
the placement of the robots (squares in black), the obsta-
cles in the environment (gray), and the area they have
secured (shaded in black). The best local move for each
robot is to move radially out from the center of the group.
Figure 7(b) focuses on the lower three robots. Here, the
optimal global move is for two adjacent robots to move
between the closest pair of obstacles, thereby preventing
perimeter breaks. The lines extending from the robots
mark the paths they plan to take. Note that the robot on the
left has chosen a plan to move between two obstacles.
Although clearly not locally optimal, this plan is globally
optimal. Reacting to that plan, the center robot plans the
correct neighboring path. They extend these plans and, as
seen in Figure 7(c), successfully breach the cluster of
objects.

Figure 7: Results from a simulated perimeter sweeping task
involving implicit coordination. (a) Eight robots begin in an
environment with six obstacles. (b) The lower three robots must
find paths between the obstacles. (c) The robots successfully
cover the area without breaking the perimeter.

V. CONCLUSIONS

This paper illustrates how to use market mechanisms to
coordinate a multi-robot team at the task decomposition,

(a) top left
(b) top right
(c) bottom



assignment, and execution phases for map building, area
reconnaissance, and perimeter sweeping applications. In
the future, we will extend these mechanisms to optimize
more complex applications requiring synchronization
between many team members in both the assignment and
execution stages.
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