
computing: nature, power and limits—robotics

applications (cis1.0)

fall 2006—lecture # B.2

monday 18-sep-2006

today

• finish HTML concepts from last class

• introduce algorithmic thinking

• dance steps example

• reading: Reed chapter 8

what is an algorithm?

• “a step-by-step sequence of instructions for carrying out some task”

• examples of algorithms outside of computing:

– cooking recipes

– dance steps

– proofs (mathematical or logical)

– solutions to mathematical problems

• in computing, algorithms are synonymous with problem solving

• How to Solve It, by George Polya

1. understand the problem

2. devise a plan

3. carry out your plan

4. examine the solution

• example: find the oldest person in the class (besides me)

1



analysis of algorithms

• often, there is more than one way to solve a problem, i.e., there exists more
than one algorithm for addressing any task

• some algorithms are better than others

• which features of the algorithm are important?

– speed (number of steps)

– memory (size of work space; how much scrap paper do you need?)

– complexity (can others understand it?)

– parallelism (can you do more than one step at once?)

• Big-Oh notation

– O(N) means solution time is proportional to the size of the problem
(N)

– O(log2N) means solution time is proportional to log2N

– see examples in Reed page 142

classic algorithm example: search

• sequential search

• binary search

• search the Manhattan phone book for “Al Pacino”:

– how many comparisons do you have to make in order to find the entry
you are looking for?

– equality versus relativity—which will tell you more? which will help you
solve the problem more efficiently?

– can you take advantage of the fact that the phone book is in sorted
order? (i.e., an “ordered list”)

– what would happen to your algorithm if the phone book were in random
order?

algorithms and programming

• programming languages provide a level of abstraction that is more under-
standable to humans than binary machine language (0′s and 1′s)

• assembly languages (in the early 1950’s) provided abbreviations for machine
language instructions (like MOV , ADD, STO)

2



• high-level languages (introduced in the late 1950’s) provided more “programmer-
friendly” ways for humans to write computer code (e.g., FORTRAN, LISP)

• program translation

– translates assembly or high-level languages into binary machine language

– two methods:

∗ interpretation:
reads and translates statements one at a time; doesn’t optimize
across an entire program; doesn’t store executable statements—
just runs them; error checking only happens at “run time” run-time
can be slow, but there’s no “compile time”

∗ compilation:
reads and translates entire program, and stores result as an exe-
cutable file; can optimize; can perform “compile time” error check-
ing; run-time is fast, but there is “compile time”

• concepts:

– compile-time (noun):
the process of compiling a program from an assembly or high-level lan-
guage into binary machine language and storing it on the computer’s
hard disk

– vs compile time (adj noun):
the amount of time it takes a compiler to translate (or “compile”) a
program

– run-time (noun):
the process of executing a compiled, stored program

– vs run time (adj noun):
the amount of time it takes a program to run
this is where Big-Oh comes in

– errors:
can be found at compile-time and at run-time

– error checking :
is done at compile-time

3


