computing: nature, power and limits—robotics applications (cis1.0) fall 2006—lecture # D.1 monday 16-oct-2006

today:

- event-driven programming
- conditional execution
- robots and agents

cis1.0-fall2006-sklar-lecD1

conditional execution

• unconditional execution—

the computer executes (i.e., "runs") the program, or components of a program, no matter what the user does, or no matter what happens while the program (or component) is running

• conditional execution—

the execution of a program, or component of a program (i.e., the way a program, or component of a program, runs), depends on what happens while the program (or component) is running; the program relies on *feedback* from its *environment* the *environment* can be a human user for an interactive web program, or a human interacting with a robot, or a robot's environment (i.e., the room in which it operates) interacting with it

• the classical programming syntax for conditional execution is *if-then-else*; in other words, *if* something happens, *then* the program does one thing; *else* (i.e., otherwise) the program does another thing

event-driven programming

• event

- something that happens while a program is running and provides input to the computer running the program

- for example:
 - * user input on a web page (like clicking on a button or in an image map)
- * sensor input to a robot (like bumping into something with a touch sensor)
- event handler
 - the part of a computer program that tells the computer what to do when an event happens
 - for example:
 - * making a window pop up on a web page when a user clicks on a button or in an image map
 - \ast making a robot stop when its touch sensor receives input that it has bumped into something

cis1.0-fall2006-sklar-lecD1

boolean tests and relational operators

- Boolean test
 - binary values can be thought of as: 0 = false and 1 = true
 - these true and false values are called *logical* or *Boolean* values
 - anything that can be evaluated as having a value of $true \; {\rm or} \; false$ is considered a Boolean test
- relational operator
 - in a computer program, it is common to *compare* two values
 - these comparisons are done using *relational operators*, or "comparison" operators:
 - == equal to ! = not equal to
 - < less than
 - <= less than or equal to
 - <= less than or equal to
 - > greater than
 - >= greater than or equal to
- mathematical statements that use these relational operators are called *boolean* expressions—and will always have a value of either *true* or *false*

cis1.0-fall2006-sklar-lecD1

cis1.0-fall2006-sklar-lecD1

boolean algebra	uses for boolean algebra
 Boolean algebra was invented by Englishman George Boole (1815-1864) the idea behind Boolean algebra is to define ways in which logical values can be combined there are three basic Boolean operators: AND, OR, NOT each logical operator is defined using a truth table AND and OR are called binary operators because they take two arguments, i.e., two values (i.e., arguments) are combined using each operator <u>AND</u> true false <u>AND</u> true false <u>AND</u> true false <u>CR</u> true false <u>true</u> true false <u>are called a unary operator</u> because it only takes one argument, i.e., one value is combined with the NOT operator <u>NOT</u> true false <u>NOT</u> true false <u>false</u> true 	 searching on the web for multiple terms: search for: "APPLE" AND "ORANGE" returns all documents that have BOTH the word APPLE and the word ORANGE in them versus: search for: "APPLE" OR "ORANGE" returns all documents that have EITHER the word APPLE or the word ORANGE in them controlling a robot to respond to multiple events: stop when: "TOUCH SENSOR IS PRESSED" AND "LIGHT SENSOR SEES DARK" makes the robot stop when BOTH its touch sensor is pressed and its light sensor sees something dark versus: stop when: "TOUCH SENSOR IS PRESSED" OR "LIGHT SENSOR SEES DARK" makes the robot stop when EITHER its touch sensor is pressed or its light sensor sees something dark
cis1.0-fall2006-sklar-lecD1 5	cis1.0-fall2006-sklar-lecD1 6

examples	
evaluate the following Boolean expressions:	1. true AND
1. true AND false	
2. true OR false	2. true OR :
3. true AND (NOT false)	
4. (NOT true) OR (NOT false)	3. true AND
5. (5 == 3) AND (6 > 3)	A (NOT true
6. (5 == 5) OR (NOT true)	4. (NOI CIU
7. $(1 == 2)$ OR $(1 > 2)$ OR $(1 < 2)$	5. (5 == 3)
8. (1 == 2) AND (1 > 2) AND (1 < 2)	
9. (1 == 2) OR (1 > 2) AND (1 < 2)	6. (5 == 5)
10.(1 == 2) AND $(1 > 2)$ OR $(1 < 2)$	
cis1.0-fall2006-sklar-lecD1 7	cis1.0-fall2006-sklar-lecD1

answers
true AND false = false
2. true OR false = true
8. true AND (NOT false) = true AND true = true
. (NOT true) OR (NOT false) = false OR true = true
5. $(5 == 3)$ AND $(6 > 3) =$ false AND true = false
5. (5 == 5) OR (NOT true) = true OR false = true

the robots for our labs

- LEGO Mindstorms
- Hitachi h8300 microprocessor called **RCX**
- with an IR (infra-red) transceiver
- and 3 input ports, for:
- touch sensor—to detect if the robot has bumped into anything
- light sensor—to detect if the robot is "looking" at something dark or light (or somewhere in between)
- and 3 output ports, for:
- motors
- light bulbs

cis1.0-fall2006-sklar-lecD1

