
cc3.12/cis1.0

computing: nature, power and limits—robotics applications

fall 2007

lecture # IV.1

event-driven programming

• algorithms

• event-driven programming

• conditional execution

• robots and agents

resources:

• reading: Reed chapter 9 and 11

cc3.12-fall2007-sklar-lecIV.1 1

what is an algorithm?

• “a step-by-step sequence of instructions for carrying out some task”

• examples of algorithms outside of computing:

– cooking recipes

– dance steps

– proofs (mathematical or logical)

– solutions to mathematical problems

• in computing, algorithms are synonymous with problem solving

• How to Solve It, by George Polya

1. understand the problem

2. devise a plan

3. carry out your plan

4. examine the solution

• example: find the oldest person in the class (besides me)

cc3.12-fall2007-sklar-lecIV.1 2

analysis of algorithms

• often, there is more than one way to solve a problem, i.e., there exists more than one

algorithm for addressing any task

• some algorithms are better than others

• which features of the algorithm are important?

– speed (number of steps)

– memory (size of work space; how much scrap paper do you need?)

– complexity (can others understand it?)

– parallelism (can you do more than one step at once?)

• Big-Oh notation

– O(N) means solution time is proportional to the size of the problem (N)

– O(log2N) means solution time is proportional to log2N

– see examples in Reed page 142

cc3.12-fall2007-sklar-lecIV.1 3

classic algorithm example: search

• sequential search

• binary search

• search the Manhattan phone book for “Al Pacino”:

– how many comparisons do you have to make in order to find the entry you are looking

for?

– equality versus relativity—which will tell you more? which will help you solve the

problem more efficiently?

– can you take advantage of the fact that the phone book is in sorted order? (i.e., an

“ordered list”)

– what would happen to your algorithm if the phone book were in random order?

cc3.12-fall2007-sklar-lecIV.1 4



algorithms and programming

• programming languages provide a level of abstraction that is more understandable to

humans than binary machine language (0′s and 1′s)

• assembly languages (in the early 1950’s) provided abbreviations for machine language

instructions (like MOV , ADD, STO)

• high-level languages (introduced in the late 1950’s) provided more “programmer-friendly”

ways for humans to write computer code (e.g., FORTRAN, LISP)

• program translation

– translates assembly or high-level languages into binary machine language

– two methods:

∗ interpretation:

reads and translates statements one at a time; doesn’t optimize across an entire

program; doesn’t store executable statements—just runs them; error checking only

happens at “run time” run-time can be slow, but there’s no “compile time”

∗ compilation:

reads and translates entire program, and stores result as an executable file; can

cc3.12-fall2007-sklar-lecIV.1 5

optimize; can perform “compile time” error checking; run-time is fast, but there is

“compile time”

• concepts:

– compile-time (noun):

the process of compiling a program from an assembly or high-level language into binary

machine language and storing it on the computer’s hard disk

– vs compile time (adj noun):

the amount of time it takes a compiler to translate (or “compile”) a program

– run-time (noun):

the process of executing a compiled, stored program

– vs run time (adj noun):

the amount of time it takes a program to run

this is where Big-Oh comes in

– errors :

can be found at compile-time and at run-time

– error checking :

is done at compile-time

cc3.12-fall2007-sklar-lecIV.1 6

event-driven programming

• event

– something that happens while a program is running and provides input to the computer

running the program

– for example:

∗ user input on a web page (like clicking on a button or in an image map)

∗ sensor input to a robot (like bumping into something with a touch sensor)

• event handler

– the part of a computer program that tells the computer what to do when an event

happens

– for example:

∗ making a window pop up on a web page when a user clicks on a button or in an

image map

∗ making a robot stop when its touch sensor receives input that it has bumped into

something

cc3.12-fall2007-sklar-lecIV.1 7

conditional execution

• unconditional execution—

the computer executes (i.e., “runs”) the program, or components of a program, no matter

what the user does, or no matter what happens while the program (or component) is

running

• conditional execution—

the execution of a program, or component of a program (i.e., the way a program, or

component of a program, runs), depends on what happens while the program (or

component) is running; the program relies on feedback from its environment

the environment can be a human user for an interactive web program, or a human

interacting with a robot, or a robot’s environment (i.e., the room in which it operates)

interacting with it

• the classical programming syntax for conditional execution is if-then-else;

in other words, if something happens, then the program does one thing; else (i.e.,

otherwise) the program does another thing

cc3.12-fall2007-sklar-lecIV.1 8



boolean tests and relational operators

• Boolean test

– binary values can be thought of as: 0 = false and 1 = true

– these true and false values are called logical or Boolean values

– anything that can be evaluated as having a value of true or false is considered a

Boolean test

• relational operator

– in a computer program, it is common to compare two values

– these comparisons are done using relational operators, or “comparison” operators:
== equal to

! = not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

• mathematical statements that use these relational operators are called boolean

expressions—and will always have a value of either true or false

cc3.12-fall2007-sklar-lecIV.1 9

boolean algebra

• Boolean algebra was invented by Englishman George Boole (1815-1864)

• the idea behind Boolean algebra is to define ways in which logical values can be combined

• there are three basic Boolean operators : AND, OR, NOT

• each logical operator is defined using a truth table

• AND and OR are called binary operators because they take two arguments, i.e., two

values (i.e., arguments) are combined using each operator
AND true false

true true false

false false false

OR true false

true true true

false true false

• NOT is called a unary operator because it only takes one argument, i.e., one value is

combined with the NOT operator

NOT true false

false true

cc3.12-fall2007-sklar-lecIV.1 10

uses for boolean algebra

• searching on the web for multiple terms:

search for: "APPLE" AND "ORANGE"

returns all documents that have BOTH the word APPLE and the word ORANGE in them

versus:

search for: "APPLE" OR "ORANGE"

returns all documents that have EITHER the word APPLE or the word ORANGE in them

• controlling a robot to respond to multiple events:

stop when: "TOUCH SENSOR IS PRESSED" AND "LIGHT SENSOR SEES DARK"

makes the robot stop when BOTH its touch sensor is pressed and its light sensor sees

something dark

versus:

stop when: "TOUCH SENSOR IS PRESSED" OR "LIGHT SENSOR SEES DARK"

makes the robot stop when EITHER its touch sensor is pressed or its light sensor sees

something dark

cc3.12-fall2007-sklar-lecIV.1 11

examples

evaluate the following Boolean expressions:

1. true AND false

2. true OR false

3. true AND (NOT false)

4. (NOT true) OR (NOT false)

5. (5 == 3) AND (6 > 3)

6. (5 == 5) OR (NOT true)

7. (1 == 2) OR (1 > 2) OR (1 < 2)

8. (1 == 2) AND (1 > 2) AND (1 < 2)

9. (1 == 2) OR (1 > 2) AND (1 < 2)

10.(1 == 2) AND (1 > 2) OR (1 < 2)

cc3.12-fall2007-sklar-lecIV.1 12



answers

1. true AND false = false

2. true OR false = true

3. true AND (NOT false) = true AND true = true

4. (NOT true) OR (NOT false) = false OR true = true

5. (5 == 3) AND (6 > 3) = false AND true = false

6. (5 == 5) OR (NOT true) = true OR false = true

cc3.12-fall2007-sklar-lecIV.1 13

7. (1 == 2) OR (1 > 2) OR (1 < 2) =

false OR false OR true =

false OR true = true

8. (1 == 2) AND (1 > 2) AND (1 < 2) =

false AND false AND true =

false AND true = false

9. (1 == 2) OR (1 > 2) AND (1 < 2) =

false OR false AND true =

false AND true = false

10.(1 == 2) AND (1 > 2) OR (1 < 2) =

false AND false OR true =

false OR true = true

cc3.12-fall2007-sklar-lecIV.1 14

robots and agents

• a robot is an autonomous embodied

agent

• it is a mechanical device that exists in the

physical world

• it has a body and a brain (i.e., a

COMPUTER or microprocessor—a very

small computer)

• it contains sensors to perceive its own

state and to perceive its surrounding

environment

• it possesses effectors which perform

actions

• it has a controller which takes input from

the sensors, makes intelligent decisions

about actions to take, and effects those

actions by sending commands to motors

controller

sensors

intelligenceperception action

effectors

body

brain

cc3.12-fall2007-sklar-lecIV.1 15

the robots for our labs

• LEGO Mindstorms

• Hitachi h8300 microprocessor

called RCX

• with an IR (infra-red) transceiver

• and 3 input ports, for:

– touch sensor—to detect if the robot has

bumped into anything

– light sensor—to detect if the robot is

“looking” at something dark or light (or

somewhere in between)

• and 3 output ports, for:

– motors

– light bulbs

cc3.12-fall2007-sklar-lecIV.1 16



programming the LEGO Mindstorms

• you will write programs on a computer and download them to the RCX using an IR

transmitter (“communication tower”)

• we will use RoboLab — a graphical programming environment

cc3.12-fall2007-sklar-lecIV.1 17

how to program in RoboLab (1)

• when you start up RoboLab, you will see a canvas on the screen and you will use the

menus (icon palettes) to select icons by clicking on them; you will create programs by

selecting icons and dragging and dropping them onto the canvas

• then you have to wire them together in order to complete the program

cc3.12-fall2007-sklar-lecIV.1 18

how to program in RoboLab (2)

• all programs start with: and end with:

• motor icons turn motors ON:

remember to check which ports your motors are connected to on the RCX

• lamp icons turn lamps ON:

• stop sign icons turn motors (and lamps) OFF:

• all of these icons appear on the main functions palette

cc3.12-fall2007-sklar-lecIV.1 19

how to program in RoboLab (3)

• these icons appear on the wait for palette

(click on on the functions palette)

• wait for icons tell the program to wait (i.e., do nothing) until something (i.e., an event)

happens

timers wait for a specified amount of time to elapse:

• touch sensor icons wait for the state of the touch sensor to change:

= wait for the touch sensor to be pushed

cc3.12-fall2007-sklar-lecIV.1 20



= wait for the touch sensor to be released (you probably won’t need to use this one!)

cc3.12-fall2007-sklar-lecIV.1 21

case study: vacuum cleaner robots

• read the articles on the web page about Roomba

• think about what a robot vacuum cleaner does

• what events should it respond to?

• what conditional behaviors should it have?

cc3.12-fall2007-sklar-lecIV.1 22


