cc3.12/cis1.0
computing: nature, power and limits—robotics applications
fall 2007
lecture # IV.1

event-driven programming
® algorithms
e event-driven programming
e conditional execution
e robots and agents
resources:

o reading: Reed chapter 9 and 11

cc3.12-fall2007-sklar-leclV.1

what is an algorithm?

e "a step-by-step sequence of instructions for carrying out some task”
e examples of algorithms outside of computing:

— cooking recipes

— dance steps

— proofs (mathematical or logical)

— solutions to mathematical problems
e in computing, algorithms are synonymous with problem solving
e How to Solve It, by George Polya

1. understand the problem
2. devise a plan
3. carry out your plan

4. examine the solution

e example: find the oldest person in the class (besides me)

cc3.12-fall2007-sklar-leclV.1

analysis of algorithms

® often, there is more than one way to solve a problem, i.e., there exists more than one
algorithm for addressing any task

e some algorithms are better than others
o which features of the algorithm are important?
— speed (number of steps)
— memory (size of work space; how much scrap paper do you need?)
— complexity (can others understand it?)
— parallelism (can you do more than one step at once?)
e Big-Oh notation
— O(N) means solution time is proportional to the size of the problem (V)
— O(logaN') means solution time is proportional to loga N

— see examples in Reed page 142

cc3.12-fall2007-sklar-leclV.1

classic algorithm example: search

e sequential search
e binary search
@ search the Manhattan phone book for “Al Pacino”:

— how many comparisons do you have to make in order to find the entry you are looking
for?

— equality versus relativity—which will tell you more? which will help you solve the
problem more efficiently?

— can you take advantage of the fact that the phone book is in sorted order? (i.e., an
“ordered list")

— what would happen to your algorithm if the phone book were in random order?

cc3.12-fall2007-sklar-leclV.1

algorithms and programming

® programming languages provide a level of abstraction that is more understandable to
humans than binary machine language (0's and 1's)

o assembly languages (in the early 1950s) provided abbreviations for machine language
instructions (like MOV, ADD, STO)

e high-level languages (introduced in the late 1950's) provided more “programmer-friendly”
ways for humans to write computer code (e.g., FORTRAN, LISP)

® program translation

— translates assembly or high-level languages into binary machine language
— two methods:
* Interpretation:
reads and translates statements one at a time; doesn’t optimize across an entire
program; doesn't store executable statements—just runs them; error checking only
happens at “run time” run-time can be slow, but there's no “compile time"
* compilation:
reads and translates entire program, and stores result as an executable file; can

cc3.12-fall2007-sklar-leclV.1 5

optimize; can perform “compile time" error checking; run-time is fast, but there is
“compile time”

e concepts:

— compile-time (noun):
the process of compiling a program from an assembly or high-level language into binary
machine language and storing it on the computer’s hard disk

— vs compile time (adj noun):

the amount of time it takes a compiler to translate (or “compile”) a program
— run-time (noun):

the process of executing a compiled, stored program
— vs run time (adj noun):

the amount of time it takes a program to run

this is where Big-Oh comes in
— errors:

can be found at compile-time and at run-time
— error checking:

is done at compile-time

cc3.12-fall2007-sklar-leclV.1 6

event-driven programming

e event
— something that happens while a program is running and provides input to the computer
running the program
— for example:
* user input on a web page (like clicking on a button or in an image map)
* sensor input to a robot (like bumping into something with a touch sensor)
e event handler
— the part of a computer program that tells the computer what to do when an event
happens
— for example:
* making a window pop up on a web page when a user clicks on a button or in an
image map
* making a robot stop when its touch sensor receives input that it has bumped into
something

cc3.12-fall2007-sklar-leclV.1 7

conditional execution

e unconditional execution—
the computer executes (i.e., “runs”) the program, or components of a program, no matter
what the user does, or no matter what happens while the program (or component) is
running

conditional execution—

the execution of a program, or component of a program (i.e., the way a program, or
component of a program, runs), depends on what happens while the program (or
component) is running; the program relies on feedback from its environment

the environment can be a human user for an interactive web program, or a human
interacting with a robot, or a robot’s environment (i.e., the room in which it operates)
interacting with it

the classical programming syntax for conditional execution is if-then-else;
in other words, if something happens, then the program does one thing; else (i.e.,
otherwise) the program does another thing

cc3.12-fall2007-sklar-leclV.1 8

cc3.12-all2007-sklar-leclV.1

boolean tests and relational operators

e Boolean test

— binary values can be thought of as: 0 = false and 1 = true
— these true and false values are called logical or Boolean values

— anything that can be evaluated as having a value of ¢rue or false is considered a
Boolean test

o relational operator

—in a computer program, it is common to compare two values

— these comparisons are done using relational operators, or "comparison” operators:
== | equal to

| = | not equal to

< | less than

<= less than or equal to

> | greater than

>= | greater than or equal to

e mathematical statements that use these relational operators are called boolean
expressions—and will always have a value of either true or false

boolean algebra

® Boolean algebra was invented by Englishman George Boole (1815-1864)

o the idea behind Boolean algebra is to define ways in which logical values can be combined
e there are three basic Boolean operators: AND, OR, NOT

e each logical operator is defined using a truth table

o AND and OR are called binary operators because they take two arguments, i.e., two
values (i.e., arguments) are combined using each operator
AND |true false OR |true false
true |true false true
false false

true true

false false | true false

o NOT is called a unary operator because it only takes one argument, i.e., one value is
combined with the NOT operator
NOT |true false

false true

cc3.12-fall2007-sklar-leclV.1 10

uses for boolean algebra

® searching on the web for multiple terms:
search for: "APPLE" AND "ORANGE"
returns all documents that have BOTH the word APPLE and the word ORANGE in them
versus:
search for: "APPLE" OR "ORANGE"
returns all documents that have EITHER the word APPLE or the word ORANGE in them

controlling a robot to respond to multiple events:

stop when: "TOUCH SENSOR IS PRESSED" AND "LIGHT SENSOR SEES DARK"
makes the robot stop when BOTH its touch sensor is pressed and its light sensor sees
something dark

versus:

stop when: "TOUCH SENSOR IS PRESSED" OR "LIGHT SENSOR SEES DARK"
makes the robot stop when EITHER its touch sensor is pressed or its light sensor sees
something dark

cc3.12-fall2007-sklar-leclV.1 11

examples

evaluate the following Boolean expressions:
1. true AND false
2. true OR false
3. true AND (NOT false)
. (NOT true) OR (NOT false)
(6 == 3) AND (6 > 3)
(6 == 5) OR (NOT true)
.(1==2)0R (1 >2)0R (1<2)
(1 ==2) AND (1 > 2) AND (1 < 2)
.(1==2)0R (1 >2) AND (1 < 2)
10.(1 == 2) AND (1 > 2) OR (1 < 2)

© o N o o &

cc3.12-fall2007-sklar-leclV.1 12

answers

1. true AND false = false

2. true OR false = true

3. true AND (NOT false) = true AND true = true

4. (NOT true) OR (NOT false) = false OR true = true

5. (6 == 3) AND (6 > 3) = false AND true = false

6. (6 == 5) OR (NOT true) = true OR false = true

cc3.12-all2007-sklar-leclV.1

7.(1==2)0R (1 >2) 0R (1 <2) =
false OR false OR true =
false OR true = true

8. (1 ==2) AND (1 > 2) AND (1 < 2) =
false AND false AND true =
false AND true = false

9. (1 ==2) OR (1 >2) AND (1 < 2)
false OR false AND true =
false AND true = false

10.(1 == 2) AND (1 > 2) OR (1 < 2)
false AND false OR true =
false OR true = true

cc3.12-fall2007-sklar-leclV.1

robots and agents

e a robot is an autonomous embodied
agent

e it is a mechanical device that exists in the
physical world

body

eit has a body and a brain (ie., a
COMPUTER or microprocessor—a very
small computer)

sensors ", effectors

e it contains sensors to perceive its own

state and to perceive its surrounding controller

environment

e it possesses effectors which perform

actions
brain

o it has a controller which takes input from
the sensors, makes intelligent decisions
about actions to take, and effects those
actions by sending commands to motors

cc3.12-fall2007-sklar-leclV.1

the robots for our labs

e LEGO Mindstorms

o Hitachi h8300 microprocessor
called RCX

e with an IR (infra-red) transceiver
e and 3 input ports, for:

— touch sensor—to detect if the robot has
bumped into anything

— light sensor—to detect if the robot is
“looking” at something dark or light (or
somewhere in between)

e and 3 output ports, for:

— motors

— light bulbs

cc3.12-fall2007-sklar-leclV.1

programming the LEGO Mindstorms

e you will write programs on a computer and download them to the RCX using an IR
transmitter (“communication tower”)

o we will use RoboLab — a graphical programming environment

cc3.12-all2007-sklar-leclV.1

how to program in RoboLab (1)

e when you start up Robolab, you will see a canvas on the screen and you will use the
menus (icon palettes) to select icons by clicking on them; you will create programs by
selecting icons and dra

W) [a2

ing and dropping them onto the canvas
=) Tools

5° -
Tl kA
L] 1] + =T
@ S
. . [

® then you have to wire them t

Ll g

ogether in order to complete the program

cc3.12-fall2007-sklar-leclV.1

how to program in RoboLab (2)

e all programs start with: |:I:| and end with: |:.:|

e motor icons turn motors ON; [E=:3] [E-53) |E28
remember to check which ports your motors are connected to on the RCX

® Jamp icons turn lamps ON: / [[
e stop sign icons turn motors (and lamps) OFF:

© [Gusewen|

Medl DeEET®

e all of these icons appear on the main functions palette

cc3.12-fall2007-sklar-leclV.1

how to program in RoboLab (3)

BE Llled @6
BTalae @RE -

BE GEE B8 <2
s Lld B

o these icons appear on the wait for palette =
[

(click on on the functions palette)

® wait for icons tell the program to wait (i.e., do nothing) until something (i.e., an event)
happens

timers wait for a specified amount of time to elapse: [[Sad| [Sad|

o to

sensor icons wait for the state of the touch sensor to change:

g = wait for the touch sensor to be pushed

cc3.12-fall2007-sklar-leclV.1

20

cc3.12-fall2007-sklar-leclV.1

= wait for the touch sensor to be released (you probably won't need to use this one!)

case study: vacuum cleaner robots

e read the articles on the web page about Roomba
e think about what a robot vacuum cleaner does
e what events should it respond to?

e what conditional behaviors should it have?

cc3.12-fall2007-sklar-leclV.1

22

