
cc3.12/cis1.0

computing: nature, power and limits—robotics applications

fall 2007

lecture # VI.1

solvability and feasibility

• conditional execution

• conditional repetition

• programmer-defined functions

• the halting problem

resources:

• reading: Reed chapters 7 and 10

cc3.12-fall2007-sklar-lecVI.1 1

conditional execution

• there are times when you want your code to behave differently under different conditions

• for example, in the assignment for unit V:

IF your robot sees something black, THEN it should stop for one second, then go

backwards for two seconds, then go forward again.

IF your robot sees something silver or gold, THEN it should stop for one second, then turn

to the left and go forward again.

• the notion of conditional execution means that you define in your program multiple

branches, and the code will follow a different branch depending on the conditions it

encounters while running

• conditional execution is sometimes referred to as IF-THEN or IF-THEN-ELSE execution

• if the IF condition is true, then the THEN branch is executed;

otherwise (if the IF condition is false), the ELSE branch is executed

cc3.12-fall2007-sklar-lecVI.1 2

• in RoboLab, the following icons facilitate conditional execution in your robot:

touch-sensor-fork light-sensor-fork fork-merge

• note that these are different from event-driven icons since the program will NOT wait for

an event to happen but will simply evaluate the condition of the fork icon and execute a

branch accordingly

• for example, when using the touch-sensor-fork :

IF the touch sensor is not pressed when the program comes to the touch-sensor-fork icon

in its execution,

THEN the top branch of icons will be executed;

ELSE the bottom branch of icons will be executed

• when using the light-sensor-fork :

IF the light sensor reads a value greater than the one specified (you have to hang a numeric

constant below the icon containing the threshold value for the IF-THEN-ELSE decision),

THEN the top branch of icons will be executed;

ELSE the bottom branch of icons will be executed

cc3.12-fall2007-sklar-lecVI.1 3

• when writing a program that uses conditional execution, it is often easier to design your

code first using a flowchart, before trying to write anything on the computer

• for example, here is a flowchart for the last challenge in the assignment for unit V:

go forward

see black?

stop for
1 second

for 2 seconds
go backward

see gold?

stop for
1 second

turn left

yes no

yes no

cc3.12-fall2007-sklar-lecVI.1 4

conditional repetition

• there are times when you want your code to execute the same thing over and over again,

repeatedly

• this is called looping or iteration

• we talked about three types of loops:

– “forever” (or infinite) loops

– counter-controlled loops

– condition-controlled loops

• in RoboLab, the following icons facilitate infinite loops:

yellow land yellow jump

goes BEFORE the code goes AFTER the code

that you want to repeat that you want to repeat

cc3.12-fall2007-sklar-lecVI.1 5

• in RoboLab, the following icons facilitate counter-controlled loops:

start-of-loop end-of-loop

goes BEFORE the code goes AFTER the code

that you want to repeat that you want to repeat

• you have to hang a loop counter (numeric constant) from the start-of-loop icon indicating

the number of times you want the loop to run

cc3.12-fall2007-sklar-lecVI.1 6

• in RoboLab, the following icons facilitate condition-controlled loops:

loop-touch-sensor-pushed loop-touch-sensor-released

loop-light-sensor-less-than loop-light-sensor-greater-than

• for the light sensor loops, you have to hang a loop counter (numeric constant) from the

“start of loop” icon indicating the number of times you want the loop to run

• for all the sensor-based loops, you have to hang the port number from the “start of loop”

icon indicating which port the sensor is connected to

• for all the loops, the icons above show the “start of loop” icon; to end the loops, you use

the end-of-loop at the end of the loop

cc3.12-fall2007-sklar-lecVI.1 7

• compare the following programs:

this program tells the robot to go forward until the touch sensor is pushed, after which it

stops and the program ends

cc3.12-fall2007-sklar-lecVI.1 8

this program tells the robot to go forward until the touch sensor is pushed, after which it

loops back and starts going forward again—forever; the robot never stops and the program

never ends

cc3.12-fall2007-sklar-lecVI.1 9

this program tells the robot to go forward as long as the touch sensor is pressed; it loops

until the touch sensor is NOT pressed, i.e., until it is released; after which, the robot stops

and the program ends

cc3.12-fall2007-sklar-lecVI.1 10

this program tells the robot to go forward as long as the touch sensor is released; it loops

until the touch sensor is NOT released, i.e., until it is pushed; after which, the robot stops

and the program ends

cc3.12-fall2007-sklar-lecVI.1 11

programmer-defined functions

• in RoboLab, “progammer-defined functions” are called subroutines

• the idea behind a subroutine is if you have some piece of code that is useful and you might

want to use it many times—not just in a loop, but other times too—then you can group

the icons together into something called a subroutine

• example:

cc3.12-fall2007-sklar-lecVI.1 12

• subroutines work by having two parts:

– first, you have to define the subroutine

– second, you have to invoke or call the subroutine

– the subroutine only runs when you call it

– it does NOT run when you define it

• the subroutine is defined with the create-subroutine icon

• hanging from the create-subroutine icon is a numeric constant, assigning a number to the

subroutine

• this is in case you want to define more than one subroutine—you give each a number so

that you can distinguish between them later

• from the lower right corner of the create-subroutine icon, you string the icons that you

want to belong to the subroutine

• you end the subroutine with the end icon

• from the top right corner of the create-subroutine icon, you continue with your program

code

cc3.12-fall2007-sklar-lecVI.1 13

• when you want to call or invoke the subroutine,

then you use the run-subroutine icon

• here’s the example again:

cc3.12-fall2007-sklar-lecVI.1 14

the halting problem

• a loop is a set of instructions that repeats several times

• we talked about 3 kinds of loops in RoboLab

(counter-controlled, condition-controlled, forever)

These concepts are the same in any computer programming language!

• here is an example in computer pseudo-code:

x=0;

do 3 times {

add 1 to x

}

How many times does this loop execute?

What is the value of x when this code completes?

cc3.12-fall2007-sklar-lecVI.1 15

• another example:

x=3;

while (x > 0) {

subtract 1 from x;

}

How many times does this loop execute?

What is the value of x when this completes?

• and another example:

x=1;

while (x < 5) {

y = x;

}

How many times does this loop execute?

What is the value of x when this completes?

cc3.12-fall2007-sklar-lecVI.1 16

• a program containing an infinite loop will run forever—it will never HALT or TERMINATE

• this is called the HALTING PROBLEM in computer science—being able to look at a

computer program and determine if it will ever halt (stop).

• sometimes, whether a program stops or not depends on input that it receives (like your

robot receiving sensor input)

• here is an example:

myProgram(input: x) {

while (x > 0) {

add 1 to x;

}

}

How many times does this loop execute if x = 0?

How many times does this loop execute if x = 1?

cc3.12-fall2007-sklar-lecVI.1 17

computability

• a problem is computable if it is possible to write a computer program that can solve it.

• a non-computable problem is also called non-solvable.

• the halting problem is not computable!

i.e., can we write a computer program that will determine if any computer program and its

input will halt?

how would you answer this question?

– could you try running the program? (what if it never halted?)

– suppose we wrote a program (“A”) that would take two inputs:

another program (“P”) and the input (“X”) for the other program

“A” works like this:

if “P(X)” halts, then “A(P,X)” should run forever

if “P(X)” does not halt, then “A(P,X)” should halt

– the paradox is: what if we call program “A” on itself?, i.e., A(A,X)

the program cannot produce an answer!

cc3.12-fall2007-sklar-lecVI.1 18

• this is called proof by contradiction—we assume that a program does exist that can solve

the halting problem; then we show that it cannot possibly exist.

• computability in general is an important question

• it was considered by concerned mathematicians even before digital computers were

developed!

• in the 1930’s, much work was devoted to this.

• the Church-Turing thesis (1940’s) states basically that any computation that can be

defined in an algorithm can be processed on a computer

• named after Alonzo Church and Alan Turing (really famous guy)

cc3.12-fall2007-sklar-lecVI.1 19

feasibility

• even if a problem is computable, it is not always feasible to write a program to compute it

because sometimes it takes too long to solve a problem

• we talked about this with robot soccer:

a robot might be able to find a ball using a complicated algorithm, but if it takes longer

than 20 minutes to find the ball, the soccer game will be over! (extreme example...)

• could you write a program that could count the number of atoms in the universe

(estimated at about 10
80)?

suppose it took 1 second to count one atom.

how many seconds would the program need to run to count all of them?

here’s another way to look at it:

how many atoms could the program count in a year?

num atoms per year = 60sec/min × 60min/hour × 24hours/day × 365days/year

= 31, 536, 000sec

= 3x10
7

how does that compare to 10
80??

cc3.12-fall2007-sklar-lecVI.1 20

