
cis15

advanced programming techniques, using c++

fall 2007

lecture # II.1

topics:

• objects and class design

resources:

• Pohl, chapter 4

cis15-fall2007-sklar-lecII.1 1

aggregate data types

• class and struct

• struct comes from C

• class is new in C++

• both are aggregate types, meaning that they group together multiple fields of data

• for example:

struct point {

double x, y;

};

• don’t forget to put a semi-colon at the end of the structure definition!

• in C, the tag (point) is optional and does not constitute a data type (you need to use

typedef as well)

• but in C++, the tag is considered a data type, hence the above example is a data type

definition

• which means that you can use point as a data type, e.g.:

cis15-fall2007-sklar-lecII.1 2

point p;

• the fields or elements of an aggregate data type are called members

• and they are referred to using “dot notation”, e.g.:

p.x = 7.0;

p.y = 10.3;

• you can also use a pointer to access members of an aggregate data type, e.g.:

p->x = 12.3;

but we will discuss pointers in the next unit, so don’t worry about this now...

• you can also declare a structure and variable in the same statement, e.g.:

struct {

double x, y;

} myPoints[3] = { {1, 2}, {3, 4}, {5, 6} };

cis15-fall2007-sklar-lecII.1 3

member functions

• in C++, members of aggregate data types can be functions

• (C only allows data members)

• in object-oriented programming (OOP) lingo, the word “method” is often used instead of

“function”

• the reason to define functions inside an aggregate data type is to follow the OOP principle

of encapsulation—operations should be packaged with data

• for example:

#include <iostream>

using namespace std;

struct point {

double x, y;

void print() const {

cout << "(" << x << "," << y << ")\n";

}

cis15-fall2007-sklar-lecII.1 4

void set(double u, double v) {

x = u;

y = v;

}

}; // end of struct--don’t forget semi-colon!

int main() {

point w;

w.set(1.2, 3.4);

cout << "point = ";

w.print();

}

• notes:

– const keyword in definition of print method indicates that the data members will not

be modified inside the method

– notice that the set method changes the values of the data members—this is considered

good OOP practise

– defining the methods inside the struct definition is called “in-line declaration”; this is

generally only okay for short, concise methods

cis15-fall2007-sklar-lecII.1 5

• the class scope operator can be used when in-line declarations are inappropriate

• for example:

#include <iostream>

using namespace std;

struct point {

double x, y;

void print() const;

void set(double u, double v);

}; // end of struct--don’t forget semi-colon!

void point::print() const {

cout << "(" << x << "," << y << ")\n";

} // end of print()

void point::set(double u, double v) {

x = u;

y = v;

} // end of set()

cis15-fall2007-sklar-lecII.1 6

int main() {

point w;

w.set(1.2, 3.4);

cout << "point = ";

w.print();

} // end of main()

cis15-fall2007-sklar-lecII.1 7

public and private access

• members of structures can be public or private

• public means that any code can access the members

• private means that only code inside the class or struct can access the members (or

“friend” classes, to be discussed later in the term)

• typically, following good OOP practice, all data members are private and only function

members are public (but not all—only those that need to be accessed outside of the

struct or class)

• for example:

struct point {

public:

void print() const;

void set(double u, double v);

private:

double x, y;

}; // end of struct--don’t forget semi-colon!

cis15-fall2007-sklar-lecII.1 8

(the rest of the example code is the same as the previous one)

cis15-fall2007-sklar-lecII.1 9

classes vs structs

• in C++, keyword class is introduced

• the difference between structs and classes is:

in a struct, the members are public by default

in a class, the members are private by default

• for example:

#include <iostream>

using namespace std;

class point {

double x, y;

public:

void print() const;

void set(double u, double v);

}; // end of struct--don’t forget semi-colon!

cis15-fall2007-sklar-lecII.1 10

void point::print() const {

cout << "(" << x << "," << y << ")\n";

} // end of print()

void point::set(double u, double v) {

x = u;

y = v;

} // end of set()

int main() {

point w;

w.set(1.2, 3.4);

cout << "point = ";

w.print();

} // end of main()

• otherwise, class and struct are the same

• but by convention, C++ programmers tend to use class

cis15-fall2007-sklar-lecII.1 11

class scope

• the class scope operator is two colons (::)

• the :: operator has the highest precedence in the language, so it always gets evaluated

first

• there are two versions of the operator: binary and unary

• we already saw the binary version: point::print(), which is used to refer to a variable’s

“class scope” (also called “local scope”)

• the unary version is like this: ::count and is used to refer to a variable’s “external scope”

(e.g., for a global variable)

• here is a (maybe) confusing example from the book:

int count = 0; // delcare global variable

void how_many(double w[], double x, int& count) {

for (int i=0; i<N; ++i) {

count += (w[i] == x); // local count

}

cis15-fall2007-sklar-lecII.1 12

++::count; // global count

} // end of how_many()

• this is only necessary since count is declared twice

• if you didn’t have the ::count, then the second time, it would also refer to the local

variable

• it is better practise not to use global variables; or at least if you do, give them unique

names to avoid confusion :-)

cis15-fall2007-sklar-lecII.1 13

nested classes

• classes can be nested

• here’s another confusing example from the book:

char c; // global scope

class X {

public:

char c; // local scope in class X

class Y {

public:

void foo(char e) { X t; ::c = t.c = c = e; }

private:

char c; // local scope in class Y

};

};

• the scope of the third (last) c is X::Y::c

cis15-fall2007-sklar-lecII.1 14

“this” pointer

• the keyword this is used to refer to an instance of a class from within itself

• it is a pointer — something we will discuss at length in the next unit

• for example:

point inverse() {

x = -x;

y = -y;

return (*this);

}

• this function returns a pointer to itself, i.e., the address of the object in memory

• we’ll come back to this when we discuss pointers

cis15-fall2007-sklar-lecII.1 15

“static” members

• the static keyword is used to refer to members that do not need to be instantiated

• in other words, it is independent of any class variable

• for example:

class point {

public:

static int dimensions;

.

.

.

};

.

.

.

int main() {

.

.

cis15-fall2007-sklar-lecII.1 16

.

point::dimensions = 2; // initialize but never instantiate point

.

.

.

}

cis15-fall2007-sklar-lecII.1 17

“const” members

• members with the const keyword in their definition cannot be modified

• this refers either to data members or to function members to indicate that the data

members contained therein are not modified

• for example:

class point {

double x, y;

public:

const int dimensions = 2;

void print() const;

};

void point::print() const {

cout << "(" << x << "," << y << ")\n";

} // end of print()

• note that the mutable keyword can override this

• for example:

cis15-fall2007-sklar-lecII.1 18

mutable int delta;

means that even if delta is referenced inside a const function, its value can be modified

cis15-fall2007-sklar-lecII.1 19

special types of classes: “containers”

• there are several special types of classes in C++

• the first we will discuss is called a container

• it is a class designed to hold large numbers of objects

• for example:

#include <iostream>

using namespace std;

class ch_stack {

public:

void reset() { top = EMPTY; }

void push(char c) { s[++top] = c; }

char pop() { return s[top--]; }

char top_of() const { return s[top]; }

bool empty() const { return(top==EMPTY); }

bool full() const { return(top==FULL); }

private:

cis15-fall2007-sklar-lecII.1 20

enum{ max_len = 100, EMPTY = -1, FULL = max_len - 1 };

char s[max_len];

int top;

};

int main() {

ch_stack s;

char str[40] = { "hello world!" };

int i = 0;

cout << "str=" << str << endl;

s.reset();

while(str[i] && ! s.full()) {

s.push(str[i++]);

}

cout << "reversed str=";

while (! s.empty()) {

cout << s.pop();

}

cout << endl;

} // end of main()

cis15-fall2007-sklar-lecII.1 21

class design

• data members should be private (“hidden”)

• function members are often public (but not always—private function members can be

used for computations internal to a class)

• functions that do not modify data members should be const

• pointers add indirection (we’ll talk about that later)

• a uniform set of functions should be included: set(), get(), print()

• UML (unified modeling language) provides a graphical method for representing classes
point

dimension

x

y

print()

set()

inverse()

cis15-fall2007-sklar-lecII.1 22

