
cis15

advanced programming techniques, using c++

fall 2007

lecture # IV.1

topics:

• inheritance

• composition of classes

resources:

• Pohl, chapters 8 and 11

cis15-fall2007-sklar-lecIV.1 1

an example

• consider the program robot.cpp (posted on the class web page)

• this program models a world in which there is a robot and some spots of dirt

• the robot wanders around looking for spots of dirt and vacuuming them up

• this is kind of like the assignment from unit II, where you had a robot running around

looking for coins; but as we go through this example, you’ll see where the code becomes

more sophisticated and more object-oriented

• the class definition for the robot class is as follows

cis15-fall2007-sklar-lecIV.1 2

class robot {

private:

point location;

int num_vacuumed;

public:

robot() { num_vacuumed = 0; }

int getX() const;

int getY() const;

void set(int x, int y);

void print() const;

void move();

void move(direction d);

void eat();

bool hungry();

};

cis15-fall2007-sklar-lecIV.1 3

composition

• the robot class includes a member of the point class, which we have used before (many

times!)

• we say that the robot class is related to the point class by composition

• composition means that one class contains a data member that is an instance of another

class, i.e., a data member that is a variable whose data type is another class

• another example of composition in robot.cpp is that the class world contains both

robot and dirt instances

cis15-fall2007-sklar-lecIV.1 4

privacy

• note that several of the function members (methods) of robot look like those for point

– getX()

– getY()

– set(int x, int y)

– print()

• these function members provide a way to access the values of the data members of the

instance of point, which is a data member of robot

• since the data members (x and y) are private, we cannot access them directly in robot

— we have to refer to them indirectly by using the public function members of point

cis15-fall2007-sklar-lecIV.1 5

overloading

• the rest of the methods in the robot class give us the functionality we want from robot,

allowing it to move, to vacuum up spots of dirt and to report whether it is busy (i.e., if

there are still spots of dirt in the world for it to vacuum)

– move()

– move(direction d)

– vacuum()

– busy()

• note that we have two versions of the move() function: one that takes no arguments and

one that takes one argument

• creating two versions of the same function, distinguished by their different argument lists,

is called overloading

• we used overloading when talking earlier in the term about different kinds of constructors

cis15-fall2007-sklar-lecIV.1 6

void robot::move(){

direction d;

d = static_cast<direction>(rand() % 4);

move(d);

}

// overloaded function

void robot::move(direction d){

int x = location.getX();

int y = location.getY();

switch(d) {

case north: y = (y + 1) % WORLD_SIZE;

break;

case south: y = (y - 1);

if (y < 0) y = WORLD_SIZE;

break;

case east: x = (x + 1) % WORLD_SIZE;

break;

case west: x = (x - 1) % WORLD_SIZE;

if (x < 0) x = WORLD_SIZE;

break;

}

location.set(x, y);

}

cis15-fall2007-sklar-lecIV.1 7

extending classes

• since we are inherently lazy, we can create a class that is an extension of another

class—instead of creating a whole new class (like dirt or robot) that contains all the

functionality of one class (like point) and then adds functionality to it

• the class being extended is called the super (or parent) class, and the resulting classes that

are derived from extending the parent are called subclasses or children classes

• look at robot2.cpp, which is a modified version of robot.cpp in which the dirt and

robot classes are redefined as subclasses of the point class

cis15-fall2007-sklar-lecIV.1 8

class dirt : public point {

private:

bool gone;

public:

dirt() { gone = false; }

void disappear();

};

void dirt::disappear(){

cout << "poof!" << endl;

gone = true;

}

class robot : public point {

private:

int num_vacuumed;

public:

robot() { num_vacuumed = 0; }

void move();

void move(direction d);

void vacuum();

bool busy();

};

cis15-fall2007-sklar-lecIV.1 9

void robot::move(){

direction d;

d = static_cast<direction>(rand() % 4);

move(d);

}

// overloaded function

void robot::move(direction d){

int x = getX();

int y = getY();

switch(d) {

case north: y = (y + 1) % WORLD_SIZE;

break;

case south: y = (y - 1);

if (y < 0) y = WORLD_SIZE;

break;

case east: x = (x + 1) % WORLD_SIZE;

break;

case west: x = (x - 1) % WORLD_SIZE;

if (x < 0) x = WORLD_SIZE;

break;

}

set(x, y);

}

cis15-fall2007-sklar-lecIV.1 10

void robot::vacuum(){

cout << "shrooooop...";

num_vacuumed++;

}

// the robot is busy until all the dirt has been found and vacuumed

bool robot::busy() {

if (num_vacuumed < NUM_SPOTS){

return true;

}

else {

return false;

}

}

cis15-fall2007-sklar-lecIV.1 11

inheritance

• the relationship between the classes is illustrated by:

robot dirt

point

• that is the class robot and the class dirt are both subclasses of the class point

• put another way, every instance of a robot is an instance of point and every instance of

dirt is an instance of point

• an instance of a subclass inherits all the members of its parent class

• which means that dirt and robot inherit x, y, getX(), getY(), set() and print()

from point

• note that x and y are private, which means that they cannot even be accessed directly

by the subclasses of point (later we’ll explain how they could be)

cis15-fall2007-sklar-lecIV.1 12

• normally we want to do more than have a subclass just be a copy of the superclass—like

we do with dirt and robot

• what we often want to do is to have the subclass add things to the superclass

• (In Java this is explicit. When we define a subclass it is by saying it extends the

superclass).

• in our example robot2, the classes dirt and robot are examples of this

cis15-fall2007-sklar-lecIV.1 13

• here dirt is extended with:

– a private data member gone, which records whether the dirt instance has been

vacuumed up yet

– a public function member disappear that sets the gone flag to true when a dirt

instance has been vacuumed up

• thus dirt has all of the data members of point as well as the additional ones listed here

• as a result we can do this:

dirt spot;

spot.set(2, 3);

which calls the set method on the dirt object named spot

• dirt inherits the set method from point

cis15-fall2007-sklar-lecIV.1 14

overriding and inheritance

• a subclass definition can re-define a function member defined in the superclass

• this is called overriding

• (don’t confuse it with overloading !)

• we can, for example, override the definition of move in robot

• the program robot3.cpp has:

class creature : public point {

public:

void move();

void move(direction d);

};

which has two subclasses:

class robot : public creature {

private:

int num_vacuumed;

cis15-fall2007-sklar-lecIV.1 15

public:

robot() { num_vacuumed = 0; }

void vacuum();

bool busy(int num_spots);

};

and

class cat : public creature {

public:

void move();

void move(direction d);

};

• the robot class uses the default move() functions, but the cat class overrides the default

definitions by providing its own (see the code, but the main difference is that the cat’s

move() function moves 2 spaces at a time instead of 1)

cis15-fall2007-sklar-lecIV.1 16

• a picture of this new hierarchy is shown below:

robot cat

creature

point

dirt

cis15-fall2007-sklar-lecIV.1 17

protected

• earlier we mentioned that we could not directly access a superclass’ private data members

in a subclass, but instead had to use the superclass’ public function members to get access

to the private data members

• however, if we really wanted access to the superclass’ data members, we could declare

them as protected instead of private

• protected data members sit somewhere between public members, which are accessible

to any object, and private members, which are only accessible within that class

• roughly speaking, protected members are like private data members but are also

accessible by members of derived classes

• we will talk more about protected later on.

cis15-fall2007-sklar-lecIV.1 18

more on inheritance

• since robot is a subclass of creature, we can carry out any operation on a robot that

we can on a creature and on a point

• we already know that this is the case where the operations are function members of

creature with simple parameters

• thus we can do:

robot rosie;

rosie.set(2, 3);

rosie.move();

calling methods from point and creature on robot

cis15-fall2007-sklar-lecIV.1 19

comparing objects

• we can compare two instances of an object:

bool robot::busier(robot r) {

if (this->num_vacuumed > r.num_vacuumed)

return true;

else

return false;

}

• we can pass this function an instance of a robot and get the result that compares the

current instance (referenced by the pointer this->) to its argument instance

cis15-fall2007-sklar-lecIV.1 20

comparing objects using inheritance

• we can also do this with a superclass but pass an instance of a subclass

• for example, suppose we have a function that compares if one point is more to the west

than another point:

bool point::moreWest(point p) {

if (this->getX() < p.getX())

return true;

else

return false;

}

• this could be called on two point objects:

point p1, p2;

p1.set(1, 2);

p2.set(3, 4);

if (p1.moreWest(p2)) ...

cis15-fall2007-sklar-lecIV.1 21

• and it could also be called on two subclasses of point:

robot r1, r2;

r1.set(1, 2);

r2.set(3, 4);

if (r1.moreWest(r2)) ...

cis15-fall2007-sklar-lecIV.1 22

virtual functions and abstract classes

• the program robot4.cpp is another version of our world in which we define something

called a virtual function

• this is the function speak() in the example

• notice that this function is first defined in the creature

• but the function definition is preceded by the keyword virtual and has a funny prototype:

class creature : public point {

public:

void move();

void move(direction d);

virtual void speak() = 0;

};

• because we have defined a virtual function, the class creature is now called abstract

• we do this when we know we will want to define a function (e.g., speak()) but we don’t

want to give it any default behavior in the superclass

cis15-fall2007-sklar-lecIV.1 23

• the virtual function speak() in creature will never be called

• because an abstract class can never be instantiated

• it can only be extended, to create other classes

• the other classes, e.g., robot and cat, define their own versions of speak() and then

these are not abstract classes but instead can be instantiated

• any class that has at least one pure virtual function is an abstract class

• you cannot create instances of abstract classes! (i.e., you cannot declare variables whose

data type is an abstract class)

cis15-fall2007-sklar-lecIV.1 24

summary

• this lecture has looked at a number of issues related to object oriented programming in

C++:

– composition of classes

– function overloading

– inheritance

– function overriding

– comparing objects

– virtual functions

– abstract classes

cis15-fall2007-sklar-lecIV.1 25

