
cis15

advanced programming techniques, using c++

fall 2007

lecture # V.1

topics:

• arrays

• pointers

• arrays of objects

resources:

• some of this lecture is covered in parts of Pohl, chapter 3

cis15-fall2007-sklar-lecV.1 1

arrays and pointers overview

• arrays and pointers are strongly related

int A[10]; // declare an array of size 10 ints (consecutive in memory)

int *pA; // declare a pointer to an int

pA = &A[0]; // pA points to the 0th element of A i.e., the address of A[0]

pA = A; // this has the same effect

• pointer arithmetic is meaningful with arrays:

if we do pA = &A[0]; then ∗(pA + 1) points to A[1]

• remember difference between (∗pA) + 1 and ∗(pA + 1) (which == ∗pA + 1)

• note that an array name is a pointer, so we can also do ∗(A + 1) and in general:

∗(A + i) == A[i] and so are A + i == &A[i]

• the difference:

an array name is a constant, and a pointer is not

so we can do: pA = A and pA + +

but we can NOT do: A = pA or A + + or p = &a

• when an array name is passed to a function, what is passed is the beginning of the array

cis15-fall2007-sklar-lecV.1 2

arrays review

• a string is an array of characters

• an array is a “regular grouping or ordering”

• a data structure consisting of related elements of the same data type

• an array has a length associated with it

• arrays need:

– data type

– name

– length

• length can be determined:

– statically — at compile time

e.g., char str1[10];

– dynamically — at run time

e.g., char *str2;

(we’ll talk about how to do this in our next lecture)

cis15-fall2007-sklar-lecV.1 3

arrays and memory

• defining a variable is called “allocating memory” to store that variable

• defining an array means allocating memory for a group of bytes, i.e., assigning a label to

the first byte in the group

• individual array elements are indexed

– starting with 0

– ending with length − 1

• indeces follow array name, enclosed in square brackets ([])

e.g., arr[25]

cis15-fall2007-sklar-lecV.1 4

arrays: character array example

// example: arrays0c.cpp

#include <iostream>

using namespace std;

const int MAX = 6;

int main(void) {

char str[MAX] = "ABCDE";

int i;

for (i=0; i<MAX-1; i++) {

cout << str[i] << " ";

}

cout << endl;

} /* end of main() */

cis15-fall2007-sklar-lecV.1 5

arrays: integer array example

// example: arrays0i.cpp

#include <iostream>

using namespace std;

const int MAX = 6;

int main() {

int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };

int i;

for (i=0; i<MAX; i++) {

cout << arr[i] << " ";

}

cout << endl;

} /* end of main() */

cis15-fall2007-sklar-lecV.1 6

pointers overview

• a pointer contains the address of an element

• allows one to access the element “indirectly”

• & = unary operator that gives address of its argument

• * = unary operator that fetches contents of its argument (i.e., its argument is an address)

• note that & and * bind more tightly than arithmetic operators

• you can print the value of a pointer using cout with the pointer or using C-style printing

(e.g., printf()) and the formatting character %p

cis15-fall2007-sklar-lecV.1 7

pointers: memory addresses (1)

• variables that contain memory addresses as their values

• other data types we’ve learned about use direct addressing

• pointers facilitate indirect addressing

• declaring pointers:

– pointers indirectly address memory where data of the types we’ve already discussed is

stored (e.g., int, char, float, etc.—even classes)

– declaration uses asterisks (*) to indicate a pointer to a memory location storing a

particular data type

• example:

int *count;

float *avg;

cis15-fall2007-sklar-lecV.1 8

pointers: memory addresses (2)

• ampersand & is used to get the address of a variable

• example:

int count = 12;

int *countPtr = &count;

• &count returns the address of count and stores it in the pointer variable countPtr

• a picture:

countPtr count

• → 12

cis15-fall2007-sklar-lecV.1 9

pointers: memory addresses (3)

here’s another example:

int i = 3, j = -99;

int count = 12;

int *countPtr = &count;

and here’s what the memory looks like:

variable name memory location value

count 0xbffff4f0 12

i 0xbffff4f4 3

j 0xbffff4f8 -99

...

countPtr 0xbffff600 0xbffff4f0

...

cis15-fall2007-sklar-lecV.1 10

pointers: address arithmetic

• an array is some number of contiguous memory locations

• an array definition is really a pointer to the starting memory location of the array

• and pointers are really integers

• so you can perform integer arithmetic on them

• e.g., +1 increments a pointer, -1 decrements

• you can use this to move from one array element to another

cis15-fall2007-sklar-lecV.1 11

pointers: example

// pointers0.cpp

#include <iostream>

using namespace std;

int main() {

int i, *j, arr[5];

for (i=0; i<5; i++) {

arr[i] = i;

}

cout << "arr=" << arr << endl;

cout << endl;

for (i=0; i<5; i++) {

cis15-fall2007-sklar-lecV.1 12

cout << "i=" << i;

cout << " arr[i]=" << arr[i];

cout << " &arr[i]=" << &arr[i];

cout << endl;

}

cout << endl;

j = &arr[0];

cout << "j=" << j;

cout << " *j=" << *j;

cout << endl << endl;;

j++;

cout << "after adding 1 to j: j=" << j;

cout << " *j=" << *j << endl;

}

cis15-fall2007-sklar-lecV.1 13

and the output is...

arr=0xbffff864

i=0 arr[i]=0 &arr[i]=0xbffff864

i=1 arr[i]=1 &arr[i]=0xbffff868

i=2 arr[i]=2 &arr[i]=0xbffff86c

i=3 arr[i]=3 &arr[i]=0xbffff870

i=4 arr[i]=4 &arr[i]=0xbffff874

j=0xbffff864 *j=0

after adding 1 to j: j=0xbffff868 *j=1

NOTE that the absolute pointer values can change each time you run the program! BUT the

relative values will stay the same.

cis15-fall2007-sklar-lecV.1 14

pointers: another example

// pointers1.cpp

#include <iostream>

using namespace std;

int main() {

int x, y; // declare two ints

int *px; // declare a pointer to an int

x = 3; // initialize x

px = &x; // set px to the value of the address of x;

// i.e., to point to x

y = *px; // set y to the value stored at the address pointed

// to by px; in other words, the value of x

cis15-fall2007-sklar-lecV.1 15

printf("x=%d px=%p y=%d\n",x,px,y);

// printing them (above) produces something like:

// x=3 px=0xbffffce0 y=3

// note that the precise value of px will depend on the machine

// and may change each time the program is run, because its value

// depends on what portion of memory is allocated to the program

// by the operating system at the time that the program is run

x++; // increment x

printf("x=%d px=%p y=%d\n",x,px,y);

// printing them (above) produces something like:

// x=4 px=0xbffffce0 y=3

// note that the value of x changes, but not px or y

(*px)++; // increment the value stored at the address pointed

// to by px

printf("x=%d px=%p y=%d\n",x,px,y);

cis15-fall2007-sklar-lecV.1 16

// printing them (above) produces something like:

// x=5 px=0xbffffce0 y=3

// note that the value of x changes, because px contains the

// address of x

// what happens if we take away the parens?

*px++;

printf("x=%d px=%p y=%d\n",x,px,y);

// printing them (above) produces something like:

// x=5 px=0xbffffce4 y=3

// the value of px changes -- is that what you expected?

// also note that it goes up by 4 -- because it is an integer pointer

// and integers take up 4 bytes

// since px has changed, what does it point to now?

printf("*px=%d\n",*px);

// the output is:

// *px=3

// because px now points to y’s address -- this is because y was

cis15-fall2007-sklar-lecV.1 17

// declared right after x was declared. note that this is usually

// the case, but not necessarily. use an array to ensure contiguity of

// addresses.

}

cis15-fall2007-sklar-lecV.1 18

and the output is...

step 0: here is what we start with: x=3 px=0xbffff874 y=3

step 1: after incrementing x: x=4 px=0xbffff874 y=3

step 2: after incrementing (*px): x=5 px=0xbffff874 y=3

step 3: after incrementing *px: x=5 px=0xbffff878 y=3

and *px=3

cis15-fall2007-sklar-lecV.1 19

and here’s a picture of what’s going on:

step 3:

3 3x =

px

y =

this is the initial situation:
 x is initialized to the value 3
 px is initialized to point to x
 y is initialized to the value pointed to by x

step 0:

4 3x =

px

y =

here is the situation after incrementing xstep 1:

5 3x =

px

y =

here is the situation after incrementing (*px),
i.e., the value that px points to, in other words, x

step 2:

5 3

px

x = y =

here is the situation after incrementing px
i.e., the POINTER increments, in other words,
it moves to point to the next contiguous item in
memory, in this case, y

cis15-fall2007-sklar-lecV.1 20

pointers and references

• pointers (same as in C):

int *p means “pointer to int”

p = &i means p gets the address of object i

• references (not in C): they are basically aliases — alternative names — for the values

stored at the indicated memory locations, e.g.:

int n;

int &nn = n;

double arr[10];

double &last = arr[9];

• the difference between them:

// refs.cpp

#include <iostream>

#include <cstdio>

using namespace std;

cis15-fall2007-sklar-lecV.1 21

int main() {

int A = 1; // declare and define A

int B = 2; // declare and define next memory location after A

int *p = &A; // p points to A

int &refA = A; // alias (reference) for A

*p = 3; // *p points to A, so A is assigned 3

cout << "initially: ";

cout << " A=" << A << " p=" << p << " *p=" << *p << " refA=" << refA;

cout << " &A=" << &A << " &p=" << &p << " &refA=" << &refA;

cout << endl;

A = *p + 1; // A is assigned value of *p=3 plus 1

cout << "after A=*p+1: ";

cout << " A=" << A << " p=" << p << " *p=" << *p << " refA=" << refA;

cout << " &A=" << &A << " &p=" << &p << " &refA=" << &refA;

cout << endl;

A = refA + 1; // A is assigned value of refA, now 4, plus 1

cout << "after A=refA+1: ";

cout << " A=" << A << " p=" << p << " *p=" << *p << " refA=" << refA;

cout << " &A=" << &A << " &p=" << &p << " &refA=" << &refA;

cis15-fall2007-sklar-lecV.1 22

cout << endl;

A++;

cout << "after A++ ";

cout << " A=" << A << " p=" << p << " *p=" << *p << " refA=" << refA;

cout << " &A=" << &A << " &p=" << &p << " &refA=" << &refA;

cout << endl;

p++;

cout << "after p++ ";

cout << " A=" << A << " p=" << p << " *p=" << *p << " refA=" << refA;

cout << " &A=" << &A << " &p=" << &p << " &refA=" << &refA;

cout << endl;

refA++;

cout << "after refA++ ";

cout << " A=" << A << " p=" << p << " *p=" << *p << " refA=" << refA;

cout << " &A=" << &A << " &p=" << &p << " &refA=" << &refA;

cout << endl;

}

cis15-fall2007-sklar-lecV.1 23

and the output is:

initially: A=3 p=0xbffff864 *p=3 refA=3 &A=0xbffff864 &p=0xbffff860 &refA=0xbffff864

after A=*p+1: A=4 p=0xbffff864 *p=4 refA=4 &A=0xbffff864 &p=0xbffff860 &refA=0xbffff864

after A=refA+1: A=5 p=0xbffff864 *p=5 refA=5 &A=0xbffff864 &p=0xbffff860 &refA=0xbffff864

after A++ A=6 p=0xbffff864 *p=6 refA=6 &A=0xbffff864 &p=0xbffff860 &refA=0xbffff864

after p++ A=6 p=0xbffff868 *p=2 refA=6 &A=0xbffff864 &p=0xbffff860 &refA=0xbffff864

after refA++ A=7 p=0xbffff868 *p=2 refA=7 &A=0xbffff864 &p=0xbffff860 &refA=0xbffff864

cis15-fall2007-sklar-lecV.1 24

arrays of objects

• you can create arrays of objects just as you create arrays of primitive data types

• example:

/* arrayso.cpp */

#include <iostream>

using namespace std;

class Point {

private:

int x, y;

public:

Point() { }

Point(int x0, int y0) : x(x0), y(y0) { }

void set(int x0, int y0) { x = x0; y = y0; }

int getX() { return x; }

int getY() { return y; }

cis15-fall2007-sklar-lecV.1 25

void print() const { cout << "(" << x << "," << y << ") "; }

};

int main() {

Point triangle[3];

triangle[0].set(0,0);

triangle[1].set(0,3);

triangle[2].set(3,0);

cout << "here is the triangle: ";

for (int i=0; i<3; i++) {

triangle[i].print();

}

cout << endl;

}

cis15-fall2007-sklar-lecV.1 26

pointers to objects

• you can also create pointers to objects just as you create pointers to primitive data types

• in the example below, we demonstrate dynamic memory allocation by declaring a pointer

to an array and then LATER declaring the memory for the array using the new function

• at the end of the program, we call the delete function to de-allocate the memory (it’s

not really necessary at the end of a program, but you might want to use it inside a

program to keep your memory management clean)

• we’ll talk more about dynamic memory allocation and memory management in the next

lecture...

• example:

/* arrayso1.cpp */

#include <iostream>

using namespace std;

class Point {

cis15-fall2007-sklar-lecV.1 27

private:

int x, y;

public:

Point() { }

Point(int x0, int y0) : x(x0), y(y0) { }

void set(int x0, int y0) { x = x0; y = y0; }

int getX() { return x; }

int getY() { return y; }

void print() const { cout << "(" << x << "," << y << ") "; }

};

int main() {

Point *triagain = new Point[3];

assert(triagain != 0);

triagain[0].set(0,0);

triagain[1].set(0,3);

triagain[2].set(3,0);

cout << "tri-ing again: ";

for (int i=0; i<3; i++) {

triagain[i].print();

cis15-fall2007-sklar-lecV.1 28

}

cout << endl;

delete[] triagain;

}

cis15-fall2007-sklar-lecV.1 29

