
cis15

advanced programming techniques, using c++

fall 2007

lecture # VII.1

topics:

• generic programming

• templates

• STL (standard template library)

on-line reference:

• http://www.cppreference.com/index.html

cis15-fall2007-sklar-lecVII.1 1

generic programming

• methodology for enhancing code reuse

• three techniques in C++:

– generic (void *) pointers

– templates

– inheritance

cis15-fall2007-sklar-lecVII.1 2

• compare the following:

int transfer1(int from[], int to[], int size) {

for (int i=0; i<size; i++) {

to[i] = from[i];

}

return(size);

}

versus:

int transfer2(void* from, void* to, int size, int elementSize) {

int numBytes = size * elementSize;

for (int i=0; i<numBytes; i++) {

static_cast<char *>(to)[i] = static_cast<char *>(from)[i];

}

return(size);

}

• if you have:

int a[10], b[10];

double c[10], d[10];

cis15-fall2007-sklar-lecVII.1 3

you can only call transfer1() with the int arrays:

transfer1(a, b, 10);

// transfer1(c, d, 10); WON’T COMPILE!

• but you can call transfer2() with

transfer2(a, b, 10, sizeof(int));

transfer2(c, d, 10, sizeof(double));

• hence, transfer2() is the generic version of the function because you can call it with

arrays of any simple data type

cis15-fall2007-sklar-lecVII.1 4

• another way to write a generic function (like transfer2()) is using a C++ feature called

a template

template<class T>

int transfer3(T* from, T* to, int size) {

for (int i=0; i<size; i++) {

to[i] = from[i];

}

return(size);

}

• template is a C++ keyword that implements something called parametric polymorphism

• which basically means that you can replace the template class type, in this case T, to any

data type

• you could call transfer3() with either int or double arrays

cis15-fall2007-sklar-lecVII.1 5

stack example, using a template.

• here is an example of a generic stack, using a template and a version of the stack class we

defined earlier this term:

template <class TYPE>

class stack {

public:

explicit stack(int size=100) : max_len(size), top(EMPTY),

s(new TYPE[size])

{ assert(s != 0); }

~stack() { delete []s; }

void reset() { top = EMPTY; }

void push(TYPE c) { s[++top] = c; }

TYPE pop() { return s[top--]; }

TYPE top_of() const { return s[top]; }

bool empty() const { return(top == EMPTY); }

bool full() const { return(top == max_len - 1); }

private:

enum { EMPTY = -1 };

cis15-fall2007-sklar-lecVII.1 6

TYPE *s;

int max_len;

int top;

};

• the identifer TYPE is the generic template argument and is replaced when a variable of this

type is declared, e.g.:

stack<char> stk_ch;

stack<char *> stk_str(200);

stack<point> stk_point(10);

• the template saves writing essentially the same code to operate on data of different types

• code snippet using stack template to reverse an array of strings:

void reverse(char *str[], int n) {

stack<char *> stk(n);

int i;

for (i=0; i<n; ++i) {

stk.push(str[i]);

}

cis15-fall2007-sklar-lecVII.1 7

for (i=0; i<n; ++i) {

str[i] = stk.pop();

}

}

here’s a main() to go with it:

int main(int argc, char *argv[]) {

int i;

cout << "before:\n";

for (i=0; i<argc; i++) {

cout << argv[i] << endl;

}

reverse(argv, argc);

cout << "\nafter:\n";

for (i=0; i<argc; i++) {

cout << argv[i] << endl;

}

} // end of main()

• if you run the above example, you should enter command-line parameters; the program will

cis15-fall2007-sklar-lecVII.1 8

print them out in the order they were entered, then run reverse() to invert the order of

the parameters and print them again, using the new order

• for example:

unix-prompt$./a.out abc def 123

before:

./a.out

abc

def

123

after:

123

def

abc

./a.out

cis15-fall2007-sklar-lecVII.1 9

• you can either declare functions in-line or externally; the latter can get awkward but still

works

• in-line examples:

TYPE top_of() const { return s[top]; }

void push(TYPE c) { s[++top] = c; }

bool empty() const { return(top==EMPTY); }

• external examples for the same function definitions:

template<class TYPE> TYPE stack<TYPE>::top_of() const {

return s[top];

}

template<class TYPE> void stack<TYPE>::push(TYPE c) {

s[++top] = c;

}

template<class TYPE> bool stack<TYPE>::empty() const {

return(top==EMPTY);

}

cis15-fall2007-sklar-lecVII.1 10

function templates

• function templates are safer than macros (#define)

• in fact, macros are out of fashion nowadays

• but here is one just in case you’ve never seen one:

#define CUBE(X) ((X)*(X)*(X))

• which would become:

template<class TYPE>

TYPE cube(TYPE n) {

return n * n * n;

}

• versus class templates, like the earlier stack example where

template <class TYPE>

goes before the class declaration as opposed to preceding the function defintion

cis15-fall2007-sklar-lecVII.1 11

Standard Template Library

• the STL or standard template library is a collection of useful templates that are part of the

C++ standard namespace

• in order to use each template in the STL, you need to include the appropriate header file

• for example, in order to use the vector template, you need to do:

#include <vector>

using namespace std;

• the STL supports a variety of data structures and numerical algorithms that are beyond

the scope of this class to discuss in detail

• the next few slides provide an overview to what is available

• for more detail, read chapters 6 and 7 in the Pohl textbook

• a very handy online reference is here:

http://www.cppreference.com/cppstl.html

cis15-fall2007-sklar-lecVII.1 12

containers

• containers are classes that store groups of like elements

• kind of like fancy, more capable arrays

• there are two types of containers:

– sequence containers

which are: vector, list, deque

– associative containers

which are: set, multiset, map multimap and bitset

• all containers have a shared interface (i.e., the public functions); these are:

– constructor and destructor

– functions to access, insert and delete elements

– iterators (explained ahead)

cis15-fall2007-sklar-lecVII.1 13

sequence containers: vector

• a vector is like an array

• but it can also handle dynamic expansion

• which means that it won’t overflow

• it can be navigated using either an index (like an array) or an iterator (more ahead on

iterators)

• example:

#include <iostream>

#include <vector>

using namespace std;

int main() {

vector<int> V(10);

for (int i=0; i<10; i++) {

V[i] = i * 10;

}

vector<int>::iterator p;

for (p = V.begin(); p != V.end(); p++) {

cout << *p << ’\t’;

}

cout << endl;

}

cis15-fall2007-sklar-lecVII.1 14

sequence containers: list

• the list container is similar to a vector but it also includes a sorting function

• and you cannot use indexing to access elements—you have to use list functions or an

iterator
• example:

#include <iostream>

#include <list>

using namespace std;

int main() {

list<int> L;

for (int i=0; i<10; i++) {

L.push_front(i * 10);

}

list<int>::iterator p;

for (p = L.begin(); p != L.end(); p++) {

cout << *p << ’\t’;

}

cout << endl;

}

• note also in this example that you don’t specify the size of the list when you instantiate it;

instead, the size is updated dynamically as you add elements to the list (using

push_front())

cis15-fall2007-sklar-lecVII.1 15

sequence containers: deque

• a deque is a double-ended queue

• you can add to / remove from both the back and front of it

• example:

#include <iostream>

#include <deque>

using namespace std;

int main() {

deque<int> DQ;

for (int i=0; i<10; i++) {

DQ.push_front(i * 10);

}

for (int i=0; i<10; i++) {

DQ.push_back(i + 10);

}

DQ.pop_front(); // remove first element

DQ.pop_back(); // remove last element

deque<int>::iterator p;

for (p = DQ.begin(); p != DQ.end(); p++) {

cout << *p << ’\t’;

}

cout << endl;

}

cis15-fall2007-sklar-lecVII.1 16

associative containers: set and multiset

• a set stores a group of unique values according to some ordering relationship

• it’s kind of like enum, except you don’t have to specify the values of each of the elements

in the data structure

• a multiset is like a set with duplicates (i.e., non-unique elements)

• example:

#include <iostream>

#include <set>

using namespace std;

int main() {

set<int> S;

for (int i=0; i<10; i++) {

S.insert(i * 10);

}

set<int>::iterator p;

for (p = S.begin(); p != S.end(); p++) {

cout << *p << ’\t’;

}

cout << endl;

}

cis15-fall2007-sklar-lecVII.1 17

associative containers: map and multimap

• a map stores elements in “key-value” pairs

• instead of using numeric indexes, like arrays or vectors, to access elements, the “key” is

used as a symbolic index

• with a map, each key and value pair is unique

• with a multimap, a single key may correspond to multiple values

• example:

#include <iostream>

#include <map>

using namespace std;

struct strCmp {

bool operator()(const char* s1, const char* s2) const {

return(strcmp(s1, s2) < 0);

}

};

int main() {

map<const char *, int, strCmp> M;

M["suz"] = 19;

M["alex"] = 12;

M["jen"] = 15;

cis15-fall2007-sklar-lecVII.1 18

map<const char *,int, strCmp>::iterator p;

for (p = M.begin(); p != M.end(); p++) {

cout << "(" << p->first << "," << p->second << ")\t";

}

cout << endl;

}

and the output is:

(alex,12) (jen,15) (suz,19)

• note that elements are listed in alphabetical order based on the key value

• this is because of the strCmp comparison operator that is part of the map definition

• if we reversed the operator, e.g., changed

return(strcmp(s1, s2) < 0);

to

return(strcmp(s2, s1) < 0);

then the output would be reversed:

(suz,19) (jen,15) (alex,12)

cis15-fall2007-sklar-lecVII.1 19

iterators

• an iterator is like a pointer

• but instead of always advancing by either incrementing or decrementing using memory

addresses, iterators move around (forward or backward one element or jumping directly to

a particular element) according to the rules of each type of iterator (as well as the type of

class they are iterating through)

• for example, compare:

int i;

for (i=0; i<N; ++i) {

...

}

with

vector<int>::iterator p;

for (p=v.begin(); p != v.end(); ++p) {

...

}

cis15-fall2007-sklar-lecVII.1 20

• there are different kinds of iterators:

– input_iterator

reads values with forward movement can be incremented, compared, and dereferenced

– output_iterator

writes values with forward movement can be incremented and dereferenced

– forward_iterator

reads or writes values with forward movement combine the functionality of input and

output iterators with the ability to store the iterators value

– bidirectional_iterator

reads and writes values with forward and backward movement like forward iterators,

but can also be incremented and decremented

– random_iterator

reads and writes values with random access

– reverse_iterator

either a random iterator or a bidirectional iterator that moves in reverse direction

cis15-fall2007-sklar-lecVII.1 21

container adaptors

• container adaptors (stack, queue and priority_queue) are containers that are

adapted from sequence containers (vector, list and deque)

• they define how elements are added and removed

• stack

– a stack is a “LIFO” data structure: “last in, first out”

– which means that items are added to the front of the stack and also removed from the

front of the stack

– we have talked about stacks in the past this semester and used the analogy of a stack

of plates in a cafeteria: new plates are added to the top; plates are also removed from

the top

– the STL stack has the following members:

constructor

empty()

pop()

push()

cis15-fall2007-sklar-lecVII.1 22

size()

top()

• queue

– a queue is a “FIFO” data structure: “first in, first out”

– which means that items are added to the back of the queue and are removed from the

front of the queue

– a queue is just like a conventional line (of humans) (also called a “queue” if you live in

the UK)

– has the following members:

constructor

back()

empty()

front()

pop()

push()

size()

cis15-fall2007-sklar-lecVII.1 23

• priority-queue

– like a queue, except that the items are ordered according to a comparison operator that

is specified when a priority queue object is instantiated

– has the following members:

constructor

empty()

pop()

push()

size()

top()

cis15-fall2007-sklar-lecVII.1 24

