
cis20.1

design and implementation of software applications I

fall 2007

lecture # I.3

topics:

• introduction to java, part 2

– branching with switch

– looping

– java classes

– more looping

– inheritance in java

– more classes

– writing your own classes

– static modifier

– overriding methods

– overloading methods

– other terminology

cis20.1-fall2007-sklar-lecI.3 1

on-line resources:

• java API specification: http://java.sun.com/javase/6/docs/api/

• java tutorial “getting started”:

http://java.sun.com/docs/books/tutorial/getStarted/

cis20.1-fall2007-sklar-lecI.3 2

branching with switch (1): recall if...

public class ex2a {

public static void main (String[] args) {

int i = (Integer.valueOf(args[0])).intValue();

if (i == 1) {

System.out.println("one, two, buckle my shoe");

}

else if (i == 3) {

System.out.println("three, four, shut the door");

}

else if (i == 5) {

System.out.println("five, six, pick up sticks");

}

else if (i == 7) {

System.out.println("seven, eight, lay them straight");

}

else if (i == 9) {

System.out.println("nine, ten, a big fat hen");

} // end if-else

} // end main()

} // end of class ex2a

cis20.1-fall2007-sklar-lecI.3 3

branching with switch (2): simple statements.

public class ex2b {

public static void main (String[] args) {

int i = (Integer.valueOf(args[0])).intValue();

switch(i) {

case 1:

System.out.println("one, two, buckle my shoe");

break;

case 3:

System.out.println("three, four, shut the door");

break;

case 5:

System.out.println("five, six, pick up sticks");

break;

case 7:

System.out.println("seven, eight, lay them straight");

break;

case 9:

System.out.println("nine, ten, a big fat hen");

break;

} // end switch

} // end main()

} // end of class ex2b

cis20.1-fall2007-sklar-lecI.3 4

branching with switch (3): compound statements.

public class ex2c {

public static void main (String[] args) {

int i = (Integer.valueOf(args[0])).intValue();

switch(i) {

case 1:

case 2:

System.out.println("one, two, buckle my shoe");

break;

case 3:

case 4:

System.out.println("three, four, shut the door");

break;

case 5:

case 6:

System.out.println("five, six, pick up sticks");

break;

case 7:

case 8:

System.out.println("seven, eight, lay them straight");

break;

case 9:

case 10:

System.out.println("nine, ten, a big fat hen");

break;

} // end switch

} // end main()

} // end of class ex2c

cis20.1-fall2007-sklar-lecI.3 5

branching with switch (4): using default.

public class ex2d {

public static void main (String[] args) {

int i = (Integer.valueOf(args[0])).intValue();

switch(i) {

case 1:

case 2:

System.out.println("one, two, buckle my shoe");

break;

case 3:

case 4:

System.out.println("three, four, shut the door");

break;

case 5: case 6:

System.out.println("five, six, pick up sticks");

break;

case 7: case 8:

System.out.println("seven, eight, lay them straight");

break;

case 9: case 10:

System.out.println("nine, ten, a big fat hen");

break;

default:

System.out.println("nothing left to say!");

break;

} // end switch

} // end main()

} // end of class ex2d

cis20.1-fall2007-sklar-lecI.3 6

looping (1).

• if you want to do something many times

• two modes of loops:

– counter controlled (now)

– condition controlled (later)

• three loop statements:

– for

– while

– do

• you can actually do both modes with each of the three statements, though some

mode/statement pairings are more common than others

cis20.1-fall2007-sklar-lecI.3 7

looping (2): counter-controlled for.

public class ex2e {

public static void main (String[] args) {

int n, i;

n = (Integer.valueOf(args[0])).intValue();

System.out.println("counting up to " + n + "...");

for (i=0; i<n; i++) {

System.out.print(i+ " ");

} // end for

System.out.println();

} // end of main

} // end of class ex2e

cis20.1-fall2007-sklar-lecI.3 8

looping (3): counter-controlled while.

public class ex2f {

public static void main (String[] args) {

int n, i;

n = (Integer.valueOf(args[0])).intValue();

System.out.println("counting up to " + n + "...");

i = 0;

while (i < n) {

System.out.print(i+ " ");

i++;

} // end while

System.out.println();

} // end of main

} // end of class ex2f

cis20.1-fall2007-sklar-lecI.3 9

looping (4): counter-controlled do.

public class ex2g {

public static void main (String[] args) {

int n, i;

n = (Integer.valueOf(args[0])).intValue();

System.out.println("counting up to " + n + "...");

i = 0;

do {

System.out.print(i+ " ");

i++;

} while (i<n);

System.out.println();

} // end of main

} // end of class ex2g

cis20.1-fall2007-sklar-lecI.3 10

looping (5): break and continue.

• these statements interrupt the normal flow of control of a program

• break is used in the switch statement to jump out of a case clause, without dropping

down into the next one

• break can also be used from within a loop to interrupt the loop and jump to the end of

the loop

• if loops are nested, it only jumps out of the loop where the break is imbedded

• continue is used from within a loop to interrupt the loop and jump to the next iteration

of the loop

• in general, these statements are bad to use because they allow you to write code that

jumps around and may be more prone to errors

cis20.1-fall2007-sklar-lecI.3 11

looping (6): other facts about loops.

• you don’t always have to count up

• you can count down too

• you don’t always have to count by ones

• you can increment or decrement by any integer

• do loops always execute at least once

• for and while loops can be defined so that they don’t execute (sometimes you might

want to do this)

cis20.1-fall2007-sklar-lecI.3 12

java classes (1).

• classes are the block around which Java is organized

• classes are composed of

– data elements

∗ variables — i.e., their values can change during the execution of a program

∗ constants — i.e., their values CANNOT change during the execution of a program

· like variables, they have a type, a name and a value

– methods

∗ modules that perform actions on the data elements

· like variables, they have a type, a name and a value

· unlike variables, the type can be void

∗ constructors — special types of methods used to set up an object before it is used

for the first time

• classes are hierarchical

• groups of related classes are organized into packages

• we’ll start looking at native packages

cis20.1-fall2007-sklar-lecI.3 13

java classes (2): the java.lang package.

• the superclass for all Java classes, at the top of the hierarchy

– java.lang.Object

• wrapper classes that wrap around primitive data types; classes that define numeric limits

and contain conversion methods

– java.lang.Boolean

– java.lang.Character

– java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,

java.lang.Float, java.lang.Double

• string handling functions

– java.lang.String

• math functions

– java.lang.Math

cis20.1-fall2007-sklar-lecI.3 14

java classes (3): java.lang.Integer class.

• a constructor:

public Integer(int value);

• some constants:

public static final int MIN VALUE

public static final int MAX VALUE

• some methods:

public int intValue();

public static String toString(int i);

public static Integer valueOf(String s);

public static int parseInt(String s);

• there is one for each primitive data type

• exercise:

use the on-line Java documentation to look up the name of the wrapper classes for each of

the primitive data types

cis20.1-fall2007-sklar-lecI.3 15

java classes (4): java.lang.String class.

• some constructors:

public String();

public String(String value);

• some methods:

public static String valueOf(int i);

public int charAt(int index);

public int compareTo(String anotherString);

public int length();

cis20.1-fall2007-sklar-lecI.3 16

java classes (5): java.lang.Math class.

• some constants:

public static final double E

public static final double PI

• some methods:

public static int abs(int a);

public static native double sin(double a);

public static native double cos(double a);

public static native double tan(double a);

public static native double pow(double a, double b);

public static native double sqrt(double a);

public static double random();

cis20.1-fall2007-sklar-lecI.3 17

java classes (6): java.util.Random class (1).

• there is another way to generate random numbers besides using the Math.random() from

the java.lang.Math class

• there are two methods defined in the Random class:

public Random();

public Random(long seed);

// constructor -- can be called with or without a seed

public void setSeed(long seed);

// sets the seed for the random number generator

• this class implements a pseudo random number generator

• which is really a sequence of numbers

• the seed tells the random number generator where to start the sequence

cis20.1-fall2007-sklar-lecI.3 18

java classes (7): java.util.Random class (2).

• more methods defined in the Random class, used to get the random numbers:

public float nextFloat();

// returns a random number between 0.0 (inclusive) and

// 1.0 (exclusive)

public int nextInt();

// returns a random number that ranges over all possible

// int values (positive and negative)

cis20.1-fall2007-sklar-lecI.3 19

java classes (8): java.util.Date class (1).

• this class is handy for getting the current date

• or creating a Date object set to a certain date

• some methods defined in the Date class:

public Date();

public Date(long date);

// constructor -- called without an argument, uses the

// current time; otherwise uses the time argument

public boolean after(Date arg);

public boolean before(Date arg);

public boolean equals(Object arg);

public long getTime();

public String toString();

• computer time is measured in milliseconds since midnight, January 1, 1970 GMT

• a Date object is handy to use as a seed for a random number generator

cis20.1-fall2007-sklar-lecI.3 20

java classes(9): instantiating objects.

• in order to use a class, you instantiate it by creating an object of that type

• this is kind of like declaring a variable

import java.util.*;

public class ex2h {

public static void main(String[] args) {

Date now = new Date();

Random rnd = new Random(now.getTime());

System.out.println("here’s the first random number: "+

rnd.nextInt());

} // end of main()

} // end of class ex2h

cis20.1-fall2007-sklar-lecI.3 21

more looping (1).

• back to loops

• condition-controlled loops

cis20.1-fall2007-sklar-lecI.3 22

more looping (2): condition-controlled while.

public class ex2i {

public static void main (String[] args) {

int card1=(int)(Math.random()*52);

int card2=(int)(Math.random()*52);

int count=1;

while (card1 != card2) {

System.out.println("count="+count+" card1="+card1+

" card2="+card2);

card1=(int)(Math.random()*52);

card2=(int)(Math.random()*52);

count++;

} // end while

System.out.println("MATCH! count="+count+" card1="+card1+

" card2="+card2);

System.exit(0);

} // end of main

} // end of class ex2i

cis20.1-fall2007-sklar-lecI.3 23

more looping (3): condition-controlled do.

public class ex2j {

public static void main (String[] args) {

int card1=(int)(Math.random()*52);

int card2=(int)(Math.random()*52);

int count=1;

do {

System.out.println("count="+count+" card1="+card1+

" card2="+card2);

card1=(int)(Math.random()*52);

card2=(int)(Math.random()*52);

count++;

} while (card1 != card2);

System.out.println("MATCH! count="+count+" card1="+card1+

" card2="+card2);

System.exit(0);

} // end of main

} // end of class ex2j

cis20.1-fall2007-sklar-lecI.3 24

more looping (3): condition-controlled for.

public class ex2k {

public static void main (String[] args) {

int card1=(int)(Math.random()*52);

int card2=(int)(Math.random()*52);

int count=1;

for (; card1 != card2;) {

System.out.println("count="+count+" card1="+card1+

" card2="+card2);

card1=(int)(Math.random()*52);

card2=(int)(Math.random()*52);

count++;

} // end for

System.out.println("MATCH! count="+count+" card1="+card1+

" card2="+card2);

System.exit(0);

} // end of main

} // end of class ex2k

OR you can include all updates in the update section of the for loop:

for (; card1 != card2; card1=(int)(Math.random()*52),

card2=(int)(Math.random()*52),

count++) {

System.out.println("count="+count+" card1="+card1+

" card2="+card2);

} // end for

cis20.1-fall2007-sklar-lecI.3 25

inheritance in java (1).

• inheritance is the means by which classes are created out of other classes

• it is a cornerstone of object-oriented programming

• the idea is to create classes that can be re-used from one application to another

• classes contain data objects and methods

• you want to be able to change the data type of the data objects and still be able to use

the same methods

• you also want to be able to change the flavor of what the methods do

cis20.1-fall2007-sklar-lecI.3 26

inheritance in java (2).

• think of the most primitive Java class, Object as being at the root of the inheritance tree

• all other classes are “children” or subclasses of that class

• here is an example of the inheritance tree for Integer:

java.lang.Object

|

+--java.lang.Number

|

+--java.lang.Integer

• Integer is a subclass of Number and Number is a subclass of Object

• Integer is also a subclass of Object

• conversely a parent is also called a superclass

• Object is a superclass of Number and Number is a superclass of Integer

• Object is also a superclass of Integer

• Object is also called the base class of Integer

cis20.1-fall2007-sklar-lecI.3 27

inheritance in java (3).

• as you move DOWN the inheritance tree from the root to the leaf, you are extending

subclasses from parent classes

– parent classes are also called superclasses

– or base classes

– children classes are derived from their parents

• as you move UP the inheritance tree from the leaf to the root, you can say that each

subclass is a more specific version of its parent

• this is known as the is-a relationship between a subclass and the parent class that the child

extends

• the keyword this is used to specify a member of the current or immediate class

cis20.1-fall2007-sklar-lecI.3 28

more classes (1): define objects.

• are “blueprints” for creating instances of objects

• example: a house

– class = architect’s blueprint

– instance = a house built following that blueprint

• instantiate = to build the house

• you can build MANY houses using the same blueprint, so you can instantiate many objects

using the same class

cis20.1-fall2007-sklar-lecI.3 29

more classes (2): contain members.

• data declarations (e.g., the people and the stuff inside the house)

– constants

– variables

• methods (e.g., the things people do with the stuff)

– actions that are performed on the object and/or with its data

– a constructor is a special method used to instantiate an object of that class

– some methods may change the values of the variables

– some methods may return the values of the variables

• scope (e.g., where can people do things with the stuff?)

– local vs global

– instance data

– method data

cis20.1-fall2007-sklar-lecI.3 30

more classes (3): instantiating objects.

• in order to use a class, you instantiate it by creating an object of that type

• this is kind of like declaring a variable

import java.util.*;

public class ex3a {

public static void main(String[] args) {

Date now = new Date();

Random rnd = new Random(now.getTime());

System.out.println("here are ten positive integers:");

for (int i=0; i<10; i++) {

System.out.println(Math.abs(rnd.nextInt()));

} // end of main()

} // end of class ex3a

cis20.1-fall2007-sklar-lecI.3 31

writing your own classes (1).

• you can create your own classes in two ways:

– by writing a completely new class

– by extending an existing class

cis20.1-fall2007-sklar-lecI.3 32

writing your own classes (2).

• when you write your own class, you can define

– “global” data elements

∗ variables

∗ constants

– methods

– constructor

cis20.1-fall2007-sklar-lecI.3 33

writing your own classes (3): variables.

• have a name, type and value

• value is initialized, to 0 for numbers (unlike C)

• have “global” scope if they are declared outside of any method

cis20.1-fall2007-sklar-lecI.3 34

writing your own classes (4): constants.

• their values CANNOT change during the execution of a program

• i.e., their values remain constant

• like variables, they have a type, a name and a value

• the keyword final indicates that the variable is a constant and its value will not change

during the execution of the program

• example:

public class java.lang.Math {

static final double PI=3.1415927...;

.

.

.

} // end of Math class

cis20.1-fall2007-sklar-lecI.3 35

writing your own classes (5): method declaration.

• like a variable, has:

– data type:

∗ primitive data type, or

∗ class

– name (i.e., identifier)

• also has:

– arguments (optional)

∗ also called parameters

∗ formal parameters are in the blueprint, i.e., the method declaration

∗ actual parameters are in the object, i.e., the run time instance of the class

– throws clause (optional)

(we’ll defer discussion of this until later in the term)

– body

– return value (optional)

cis20.1-fall2007-sklar-lecI.3 36

writing your own classes (6): method use.

• program control jumps inside the body of the method when the method is called (or

invoked)

• arguments are treated like local variables and are initialized to the values of the calling

arguments

• method body (i.e., statements) are executed

• method returns to calling location

• if method is not of type void, then it also returns a value

– return type must be the same as the method’s type

– calling sequence (typically) sets method’s return value to a (local) variable; or uses the

method’s return value in some way (e.g., a print statement)

cis20.1-fall2007-sklar-lecI.3 37

writing your own classes (7): constructor.

• a constructor is a special method that is invoked when an object is instantiated

• a constructor can have arguments, like any other method

• a constructor does not return a value

• a constructor’s name is the same as the name of the class to which it belongs

• a constructor is invoked by using the new keyword

• example:

Date now = new Date();

Random r1 = new Random();

Random r2 = new Random(now.getTime());

cis20.1-fall2007-sklar-lecI.3 38

writing your own classes (8): encapsulation and visibility.

• objects should be self-contained and self-governing

• only methods that are part of an object should be able to change that object’s data

• some data elements should not even be seen (or visible) outside the object

• public data elements can be seen (i.e., read) and modified (i.e., written) from outside the

object

• private data elements can be seen (i.e., read) and modified (i.e., written) ONLY from

inside the object

• typically, variables are private and methods that provide access to them (both read and

write) are public

• typically, constants are public

• example: house

– walls provide privacy for the inside

– windows provide public viewing of some of the inside

cis20.1-fall2007-sklar-lecI.3 39

writing your own classes (9): example.

public class Coin {

// declare constants

public static final int HEADS = 0;

public static final int TAILS = 1;

// declare variables

private int face;

private int value;

// constructor

public Coin(int value) {

this.value = value;

flip();

} // end of Coin()

cis20.1-fall2007-sklar-lecI.3 40

// flip the coin by randomly choosing a value for the face

public void flip() {

face = (int)(Math.random()*2);

} // end of flip()

// return the face value

public int getFace() {

return face;

} // end of getFace()

// return the coin’s value

public int getValue() {

return value;

} // end of getValue()

cis20.1-fall2007-sklar-lecI.3 41

// return the coin’s face value as a String

public String toString() {

String faceName;

if (face == HEADS) {

faceName = "heads";

}

else {

faceName = "tails";

}

return faceName;

} // end of toString()

} // end of class Coin

cis20.1-fall2007-sklar-lecI.3 42

static modifier (1).

• when we instantiate an object in order to use it, we are creating an instance variable

e.g., Random r = new Random();

• some members in some classes are static which means that they don’t have to be

instantiated to be used

• for example, all the methods in the java.lang.Math class are static

– you don’t need to create an object reference variable whose type is Math in order to

use the methods in the Math class

– e.g., Math.abs(), Math.random()

• you use the name of the class preceding the dot operator, instead of the name of the

instance variable, in order to access the static members of the class

• e.g., Math.random() vs r.nextFloat() (where r is the instance variable of type

Random that we created above)

• that is why we can use main() without instantiating anything

i.e., public static void main()

cis20.1-fall2007-sklar-lecI.3 43

static modifier (2).

• constants, variables and methods can all be static

• except constructors

(since they are only used to instantiate, it doesn’t make sense to have a static constructor)

• typically, constants are static

• example:

public class Coin {

public static final int HEADS=0;

public static final int TAILS=1;

.

.

.

} // end of Coin class

• we can now access Coin.HEADS and Coin.TAILS without instantiating and/or without

referring to a specific instance variable

cis20.1-fall2007-sklar-lecI.3 44

overriding methods.

• when you extend a class, you can override methods defined in the parent class by defining

them again in the child (and giving the child version different behavior)

• the rule is: the version of any method that is invoked is the definition closest to the leaf of

the tree

• if you want to refer to the version of the method in a class’s superclass, you use the super

reference

cis20.1-fall2007-sklar-lecI.3 45

overloading methods (1).

• in addition to changing precisely what a method does, you can also change the arguments

to that method

• this is very useful if you are changing the data type of data objects defined in the class

• you can create a new version of a method which has different arguments from the version

of the method defined in the class’s superclass

• this is what happens when we use different versions of the println() method:

int i = 5;

String s = "hello";

System.out.println(i);

System.out.println(s);

cis20.1-fall2007-sklar-lecI.3 46

overloading methods (2).

• in other words, you are using the same method name with formal parameters of different

types

• example:

– java.lang.System has-a variable called out,

which is-a java.io.PrintStream

– whose declarations include:

public void println();

public void println(boolean x);

public void println(char x);

public void println(double x);

public void println(float x);

public void println(int x);

public void println(Object x);

public void println(String x);

• these are all different ways of printing data, but the difference is the type of object being

printed

cis20.1-fall2007-sklar-lecI.3 47

other terminology...

• polymorphism

– “having many forms”

– lets us use different implementations of a single class

– we will talked about this later in relation to interfaces

– a polymorphic reference can refer to different types of objects at different times

• abstract class

– represents a generic concept in a class hierarchy

– cannot be instantiated — can only be extended

cis20.1-fall2007-sklar-lecI.3 48

example.

public class Quarter extends Coin {

// overload constructor

public Quarter() {

value = 25;

flip();

} // end of Quarter()

OR

public Quarter() {

super(25);

} // end of Quarter()

} // end of class Quarter

cis20.1-fall2007-sklar-lecI.3 49

exercise.

• create a class called Card which is a playing card

• the card has a face (hearts, diamonds, clubs or spades)

• the card has a value (2..10, J, Q, K, A), all face cards have value 10

• define a constructor that randomly sets the card’s face and value

• define methods to return the card’s face and value

• define another method called pick that will change the card’s face and value, as if you

picked another card from the deck

• create a second class that contains a main() method

• define variable(s) in the second class of type Card

• loop inside the main(), randomly picking cards until the total is greater than or equal to

21

• assume that you replace each card in the deck immediately after it has been picked (so you

don’t have to keep track of which cards you have picked)

• extension: modify the exercise so that you do keep track of which cards have been picked

cis20.1-fall2007-sklar-lecI.3 50

