
cis20.1

design and implementation of software applications I

fall 2007

lecture # I.4

topics:

• introduction to java, part 3

– static modifier

– overriding methods

– overloading methods

– polymorphism and abstract classes

– references

– comparing objects

– exception handling

– arrays

– vectors

– streams

– files

– utility classes

cis20.1-fall2007-sklar-lecI.4 1

static modifier (1).

• when we instantiate an object in order to use it, we are creating an instance variable

e.g., Random r = new Random();

• some members in some classes are static which means that they don’t have to be

instantiated to be used

• for example, all the methods in the java.lang.Math class are static

– you don’t need to create an object reference variable whose type is Math in order to

use the methods in the Math class

– e.g., Math.abs(), Math.random()

• you use the name of the class preceding the dot operator, instead of the name of the

instance variable, in order to access the static members of the class

• e.g., Math.random() vs r.nextFloat() (where r is the instance variable of type

Random that we created above)

• that is why we can use main() without instantiating anything

i.e., public static void main()

cis20.1-fall2007-sklar-lecI.4 2

static modifier (2).

• constants, variables and methods can all be static

• except constructors

(since they are only used to instantiate, it doesn’t make sense to have a static constructor)

• typically, constants are static

• example:

public class Coin {

public static final int HEADS=0;

public static final int TAILS=1;

.

.

.

} // end of Coin class

• we can now access Coin.HEADS and Coin.TAILS without instantiating and/or without

referring to a specific instance variable

cis20.1-fall2007-sklar-lecI.4 3

overriding methods.

• when you extend a class, you can override methods defined in the parent class by defining

them again in the child (and giving the child version different behavior)

• the rule is: the version of any method that is invoked is the definition closest to the leaf of

the tree

• if you want to refer to the version of the method in a class’s superclass, you use the super

reference

cis20.1-fall2007-sklar-lecI.4 4

overloading methods (1).

• in addition to changing precisely what a method does, you can also change the arguments

to that method

• this is very useful if you are changing the data type of data objects defined in the class

• you can create a new version of a method which has different arguments from the version

of the method defined in the class’s superclass

• this is what happens when we use different versions of the println() method:

int i = 5;

String s = "hello";

System.out.println(i);

System.out.println(s);

cis20.1-fall2007-sklar-lecI.4 5

overloading methods (2).

• in other words, you are using the same method name with formal parameters of different

types

• example:

– java.lang.System has-a variable called out,

which is-a java.io.PrintStream

– whose declarations include:

public void println();

public void println(boolean x);

public void println(char x);

public void println(double x);

public void println(float x);

public void println(int x);

public void println(Object x);

public void println(String x);

• these are all different ways of printing data, but the difference is the type of object being

printed

cis20.1-fall2007-sklar-lecI.4 6

other terminology...

• polymorphism

– “having many forms”

– lets us use different implementations of a single class

– we will talked about this later in relation to interfaces

– a polymorphic reference can refer to different types of objects at different times

• abstract class

– represents a generic concept in a class hierarchy

– cannot be instantiated — can only be extended

cis20.1-fall2007-sklar-lecI.4 7

example.

public class Quarter extends Coin {

// overload constructor

public Quarter() {

value = 25;

flip();

} // end of Quarter()

OR

public Quarter() {

super(25);

} // end of Quarter()

} // end of class Quarter

cis20.1-fall2007-sklar-lecI.4 8

references (1).

• when we declare a variable whose data type is a class, we are declaring an object reference

variable

• that variable refers to the location in the computer’s memory where the actual object is

being stored

• an object reference variable and an object are two separate things

• declaration of an object reference variable:

Coin x;

• creation of an object (also called “construction”, “instantiation”):

x = new Coin();

cis20.1-fall2007-sklar-lecI.4 9

references (2).

• when you declare a variable as a primitive data type, the computer sets aside a fixed

amount of memory, based on the size of the data type

• when you declare a variable of any other data type (i.e., a class), you are actually declaring

a reference

• a reference is typically the size of an int or a long

• it stores an address or the location in the computer’s memory of where the actual data will

be kept

• you can think of it like a telephone book

– the phone book has a bunch of addresses in it

– but not the actual buildings

– just the locations of buildings

cis20.1-fall2007-sklar-lecI.4 10

references (3).

• here’s how it works inside the computer

• given the following declarations:

int i = 45;

String s = "hello";

• the memory looks something like this:
i s

45 • → hello

• i is the label for the location in memory where the actual data is stored — in this case the

int 45

• s is the label for the location in memory where the address is stored; the address is the

location in memory where the actual data for s is stored

• in C, this is called a pointer

• we say that s points to or references the location in memory where the actual data for s is

stored

cis20.1-fall2007-sklar-lecI.4 11

references (4).

• the reference is actually a memory address, usually a long

• given our example on previous slide, the memory might look like this:

variable name location in memory value

i 837542 45

s 837543 837602

837544

837545

...

s[0] 837602 ’h’

s[1] 837603 ’e’

s[2] 837604 ’l’

s[3] 837605 ’l’

s[4] 837606 ’o’

cis20.1-fall2007-sklar-lecI.4 12

references (5).

• let’s go back to the Coin example

• comment out the toString() method and re-run the example

• here’s the output now:

i[0]=Coin@73d6a5

i[1]=Coin@111f71

i[2]=Coin@273d3c

i[3]=Coin@256a7c

i[4]=Coin@720eeb

i[5]=Coin@3179c3

i[6]=Coin@310d42

i[7]=Coin@5d87b2

i[8]=Coin@77d134

i[9]=Coin@47e553

• these are the references of the array elements

• we can see these reference values because we took out the toString() method — calling

System.out.println(pocket[i]) automatically coerces its argument (pocket[i])

to a String so it can print it; if there is no explicit toString() method in the class,

then a reference is the closest String representation

cis20.1-fall2007-sklar-lecI.4 13

references (6).

• when an object reference variable has been declared but the object it refers to has not

been created, then the object reference variable is called a null reference

• for example:

Coin x;

x.flip();

• will generate an error called a NullPointerException because the object which x refers

to has not been instantiated

• you can use a constant called null to check if an object reference variable is null

• for example:

Coin x;

if (x != null) {

x.flip();

}

cis20.1-fall2007-sklar-lecI.4 14

references (7).

• an alias is an object reference variable that refers to an object that was previously

constructed and is already referred to by another object reference variable

• for example:

Coin x = new Coin();

Coin y;

y = x;

y.flip();

• y is called an “alias” of x (and vice versa) because they both refer to the same location in

the computer’s memory

cis20.1-fall2007-sklar-lecI.4 15

references (8).

• garbage collection is necessary when all references to an object are gone

• because when there are no object reference variables, then there is no way to know where

in memory an object is located

• Java handles this for you automatically

• the JVM periodically invokes automatic garbage collection while it is running

• all the memory that is allocated to an application but is not being used is “restored” so

that it can be re-allocated to the application later

• if you want to perform some garbage collection on a class that you create yourself, then

you would write a method called finalize() and whenever the automatic garbage

collection was invoked and cleaned up an object of your class type, then your finalize()

method would be called

cis20.1-fall2007-sklar-lecI.4 16

references (9).

• when you pass objects as parameters (arguments) to a method, a reference is passed, not

the actual object

• so be careful about what changes!

• here’s an example using three classes:

– Num

– ParameterTester

– ex4d

cis20.1-fall2007-sklar-lecI.4 17

references (10).

public class Num {

private int value;

public Num(int update) {

value = update;

} // end of constructor

public void setValue(int update) {

value = update;

} // end of setValue()

public String toString() {

return value+"";

} // end of toString()

} // end of Num class

cis20.1-fall2007-sklar-lecI.4 18

references (11).

public class ParameterTester {

public void changeValues(int f1, Num f2, Num f3) {

System.out.println("start call:\t"+

"f1="+f1+"\tf2="+f2+"\tf3="+f3);

f1 = 999;

f2.setValue(888);

f3 = new Num (777);

System.out.println("end call:\t"+

"f1="+f1+"\tf2="+f2+"\tf3="+f3);

} // end of changeValues()

} // end of class ParameterTester

public class ex4d {

public static void main(String[] args) {

ParameterTester tester = new ParameterTester();

int a1 = 111;

Num a2 = new Num(222);

Num a3 = new Num(333);

System.out.println("before call:\t"+

"a1="+a1+"\ta2="+a2+"\ta3="+a3);

tester.changeValues(a1, a2, a3);

System.out.println("after call:\t"+

"a1="+a1+"\ta2="+a2+"\ta3="+a3);

} // end of main()

} // end of class ex4d

cis20.1-fall2007-sklar-lecI.4 19

references (12).

• sample output:

before call: a1=111 a2=222 a3=333

start call: f1=111 f2=222 f3=333

end call: f1=999 f2=888 f3=777

after call: a1=111 a2=888 a3=333

cis20.1-fall2007-sklar-lecI.4 20

comparing objects (1).

• comparing two Java objects is tricky

• you have to be careful of what you are comparing:

– is it the value of some member(s) of the class?

– or is it the reference? (like a pointer in C/C++)

• using == compares the references (addresses)

• which is not the same as comparing the values of member(s) of the class

• many classes have a method called compareTo() to compare the value of member(s) of

the class

cis20.1-fall2007-sklar-lecI.4 21

comparing objects (2).

• here’s an example from the Coin class:

– comparing the value of the face member of two coins:

Coin coin0 = new Coin(10);

Coin coin1 = new Coin(10);

if (coin0.getValue() == coin1.getValue()) {

System.out.println("coins 0 and 1 have the same value");

}

– versus comparing the references:

if (coin0 == coin1) {

System.out.println("coins 0 and 1 are the same");

}

cis20.1-fall2007-sklar-lecI.4 22

comparing objects (3).

• in order to compare the value of two Strings, we need to use the method

public int compareTo(String str)

from the java.lang.String class

• this method does a lexical comparison of its String argument with the current object

(i.e., its instantiated value)

• it returns an int as follows:
if the current object... then the method returns

is the same text as str 0

comes lexically before str an int < 0 (e.g., -1)

comes lexically after str an int > 0 (e.g., +1)

• using == to compare two Strings compares their addresses, NOT the values of the text

they store

• this is the same for comparing any two objects in Java

• most classes define a compareTo() method, just as most classes define a toString()

method

cis20.1-fall2007-sklar-lecI.4 23

comparing objects (4).

• for example:

public class ex13d {

public static void main(String[] args) {

String s1 = new String("hello");

String s2 = new String("hello");

System.out.println("s1=["+s1+"]");

System.out.println("s2=["+s2+"]");

System.out.println("(s1 == s2) = " + (s1 == s2));

System.out.println("s1.compareTo(s2)="+s1.compareTo(s2));

System.out.println("s2.compareTo(s1)="+s2.compareTo(s1));

} // end of main()

} // end of class ex13d

• sample output:

s1=[hello]

s2=[hello]

(s1 == s2) = false

s1.compareTo(s2)=0

s2.compareTo(s1)=0

cis20.1-fall2007-sklar-lecI.4 24

comparing objects (5).

• so we could add to our Coin class:

public int compareTo(Coin coin) {

if (value == coin.getValue()) {

return 0;

}

else if (value < coin.getValue()) {

return -1;

}

else {

return 1;

}

} // end of compareTo()

cis20.1-fall2007-sklar-lecI.4 25

exception handling.

• example:

try {

i = System.in.read();

}

catch (IOException iox) {

System.out.println("there was an error: " + iox);

}

• try clause contains code which may generate an exception, i.e., an error

• catch clause contains code to execute in case the error happens; i.e., where to go if the

exception gets caught

cis20.1-fall2007-sklar-lecI.4 26

arrays (1).

• used to associate multiple instances of the same type of variable

• the “[]” indicates it’s an array

• we can have arrays of anything (i.e., other data types)

• one example we’ve already used is String[], which is an array of String...

• visualize an array as a sequence of boxes, contiguous in the computer’s memory, where

each box stores one instance of the type of data associated with that array:

• the boxes are numbered, starting with 0 and ending with the length of the array less one;

each number is called an index

• the indices for an array of 10 items can be visualized like this:

0 1 2 3 4 5 6 7 8 9

cis20.1-fall2007-sklar-lecI.4 27

arrays (2).

• to use an array, first you must declare it:

int[] A;

• then you must instantiate it:

A = new int[10];

• or you can do both of these in one step:

int[] A = new int[10];

• then you can access its elements:

A[4]

(index=4, which is the 5th item in the array...)

• you can use this accessed item just like any single data element of that type, in this case

an int

• the number of items in the array is the variable A.length

cis20.1-fall2007-sklar-lecI.4 28

arrays (3).

• here’s an example that stores in an array 5 random numbers between 0 and 100:

public class ex4a {

public static void main(String[] args) {

int[] A = new int[5];

for (int i=0; i<A.length; i++) {

A[i] = (int)(Math.random()*100);

}

for (int i=0; i<A.length; i++) {

System.out.println("i["+i+"]="+A[i]);

} // end for i

} // end of main()

} // end of class ex4a

cis20.1-fall2007-sklar-lecI.4 29

two-dimensional arrays.

• arrays of arrays

• also called a two-dimensional array

• two-dimensional arrays are declared like this:

char[][] a2;

• and instantiated like this (for example for a 5x5 array):

a2 = new char[5][5];

• the first dimension is called row

• the second dimension is called column

• so the element in the i-th row and the j-th column is accessed like this:

a2[i][j]

•

cis20.1-fall2007-sklar-lecI.4 30

arrays of objects (1).

• we can have arrays of anything — i.e., other data types — like classes

• for example, we can have an array of Coin, using the class from last lecture

• the Coin[] variable contains a list of addresses

• as with int or char arrays, first you must declare and instantiate the array:

Coin[] pocket = new Coin[10];

• but because the array elements are not primitive data types, you must also instantiate each

array entry:

for (int i=0; i<pocket.length; i++) {

pocket[i] = new Coin();

} // end for i

cis20.1-fall2007-sklar-lecI.4 31

arrays of objects (2).

public class ex4b {

public static void main(String[] args) {

final int NUMCOINS = 10;

Coin[] pocket = new Coin[NUMCOINS];

int headcount = 0, tailcount = 0;

// instantiate each of the coins in the array

for (int i=0; i<pocket.length; i++) {

pocket[i] = new Coin();

} // end for i

// print the array

for (int i=0; i<pocket.length; i++) {

System.out.println("i["+i+"]="+pocket[i]);

} // end for i

} // end of main()

} // end of class ex4b

cis20.1-fall2007-sklar-lecI.4 32

arrays of objects (3).

public class Coin {

public final int HEADS = 0;

public final int TAILS = 1;

private int face;

public Coin() {

flip();

} // end of Coin()

public void flip() {

face = (int)(Math.random()*2);

} // end of flip()

public int getFace() {

return face;

} // end of getFace()

public String toString() {

String faceName;

if (face == HEADS) {

faceName = "heads";

}

else {

faceName = "tails";

}

return faceName;

} // end of toString()

} // end of class Coin

cis20.1-fall2007-sklar-lecI.4 33

arrays of objects (4).

• sample output:

i[0]=tails

i[1]=tails

i[2]=heads

i[3]=tails

i[4]=tails

i[5]=heads

i[6]=tails

i[7]=heads

i[8]=heads

i[9]=heads

•

•

•

• but why do you have to instantiate twice?

• because when you instantiate the first time:

Coin[] pocket = new Coin[10];

you are only allocating memory for references for each Coin array element

cis20.1-fall2007-sklar-lecI.4 34

vectors (1).

• Java has a nice class which handles arrays dynamically: java.util.Vector

• the elements of a Vector can be any type of Java Object

• note that when you fetch an element from a vector, you have to cast it from a generic

object to the specific class type the object should be (see example below)

• some methods:

– constructor: Vector();

– public void addElement(Object obj);

– public void insertElementAt(Object obj, int index);

– public void removeElementAt(int index);

– public void removeAllElements();

– public void setElementAt(Object obj, int index);

– public Object elementAt(int index);

– public int size();

cis20.1-fall2007-sklar-lecI.4 35

vectors – example.

import java.util.*;

import java.io.*;

public class ex4c {

public static void main(String[] args) {

Vector pocket;

int npocket = Integer.parseInt(args[0]);

pocket = new Vector(npocket);

for (int i=0; i<npocket; i++) {

pocket.addElement(new Coin());

}

for (int i=0; i<npocket; i++) {

Coin tmp = (Coin)pocket.elementAt(i);

System.out.print(tmp + " ");

}

System.out.println();

} // end of main()

} // end of class ex4c

cis20.1-fall2007-sklar-lecI.4 36

vectors – things to notice.

• notice that we instantiate twice...

• notice that we instantiate in the call to pocket.addElement():

pocket.addElement(new Coin());

• notice that we cast the return from pocket.elementAt():

Coin tmp = (Coin)pocket.elementAt(i);

cis20.1-fall2007-sklar-lecI.4 37

streams (1).

• we’ve drawn a picture of input and output many times this semester:

input → CPU → output

• up to now, input has been from the keyboard and output has been to the screen

• today we will read input from “text files” and write output to “text files”

• input and output flow from and to streams

– a stream is an ordered sequence of bytes

– streams flow from a source to a destination

– with input, the source is the keyboard and the destination is a program

– with output, the source is a program and the destination is the screen

cis20.1-fall2007-sklar-lecI.4 38

streams (2).

• thus there are two categories of streams:

– input streams

– output streams

• streams can also be subdivided based on their content:

– character streams (i.e., text)

– byte streams (i.e., binary data)

• or their usage:

– data streams (e.g., String in memory, file on disk)

– processing streams (manipulation of a data stream)

cis20.1-fall2007-sklar-lecI.4 39

streams (3).

• in order to handle streams in Java, we need several classes from the java.io package:

• classes that handle byte streams

– InputStream← FileInputStream

– OutputStream← FileOutputStream← PrintStream

• classes that handle character streams

– Reader ← BufferedReader

– Writer ← BufferedWriter

• for example, in java.lang.System:

– System.in is an InputStream

– System.out is a PrintStream

cis20.1-fall2007-sklar-lecI.4 40

files (1).

• typically, there are three processing steps when using files:

1. open

2. read, write or update

3. close

• we’ll only talk about read and write in Java (not update)

• in order to implement file I/O in Java, we need several classes from the

java.io package:

– FileReader

– FileWriter

– BufferedReader

– BufferedWriter

– PrintWriter

cis20.1-fall2007-sklar-lecI.4 41

files – reading example.

import java.io.*;

public class ex4f {

public static void main(String[] args) {

String line = "";

// read data from file into program variables

try {

FileReader fr = new FileReader("data.dat");

BufferedReader infile = new BufferedReader(fr);

line = infile.readLine();

infile.close();

}

catch(FileNotFoundException fnfx) {

System.out.println("file not found: data.dat");

}

catch(IOException iox) {

System.out.println(iox);

}

System.out.println("line=["+line+"]");

} // end of main()

} // end of ex4f class

cis20.1-fall2007-sklar-lecI.4 42

files – writing example.

import java.io.*;

public class ex4g {

public static void main(String[] args) {

try {

FileWriter fw = new FileWriter("myfile.dat");

PrintWriter outfile = new PrintWriter(new BufferedWriter(fw));

outfile.println("hello world");

outfile.close();

}

catch(IOException iox) {

System.out.println(iox);

}

} // end of main() method

} // end of ex4g class

cis20.1-fall2007-sklar-lecI.4 43

files – using them.

• the simple model for programs that work with data files is to:

1. open the data file for reading

2. read the contents of the data file into program variables

3. close the data file

4. manipulate the values in the program variables

5. open the data file for writing

6. write the manipulated values to the data file

7. close the data file

• useful input class: StringTokenizer

• useful output class: DecimalFormat

cis20.1-fall2007-sklar-lecI.4 44

utility classes: java.util.StringTokenizer.

• used to break up a string into “tokens”, i.e. components

• each token is separated by a “delimiter”

• default delimiter is whitespace

• but you can set another value for delimiter

• primary method used: public String nextToken();

• example:

line = infile.readLine();

tokenizer = new StringTokenizer(line);

name = tokenizer.nextToken();

try {

units = Integer.parseInt(tokenizer.nextToken());

price = Float.parseFloat(tokenizer.nextToken());

}

catch(NumberFormatException nfx) {

System.out.println("error in input; line ignored: " + line);

}

cis20.1-fall2007-sklar-lecI.4 45

utility classes: java.text.DecimalFormat.

• used to format decimal numbers

• construct an object that handles a format

• use that format to output decimal numbers

• formatting patterns include:

– 0 used to indicate that a digit should be printed, or 0 if there is no digit in the number

(i.e., leading and trailing zeros)

– # used to indicate that if there is a digit in the number, then it should be printed;

indicates rounding if used to the right of the decimal point

• example:

DecimalFormat fmt = new DecimalFormat("#.00");

double price;

System.out.println("price = $" + fmt.format(price));

cis20.1-fall2007-sklar-lecI.4 46

exercises.

• start with the example class ex4a that stores in an array 5 random numbers between 0 and

100

• write a method that finds the minimum number and returns its index;

modify the main to call the method and print out the smallest number

• modify the main to ask the user how big she wants the array to be,

read the user’s answer from the keyboard as a String,

convert the String to an int and

use it as the size of the array

• write a method that writes the contents of the array to a file;

modify the main to call this method

cis20.1-fall2007-sklar-lecI.4 47

