cis20.1
design and implementation of software applications |
fall 2007
lecture # 1.4
topics:
e introduction to java, part 3
— static modifier
— overriding methods
— overloading methods
— polymorphism and abstract classes
— references
— comparing objects
— exception handling
— arrays
— vectors
— streams
— files
— utility classes

cis20.1-fall2007-sklar-lecl.4 1

static modifier (1).

e when we instantiate an object in order to use it, we are creating an instance variable
e.g., Random r = new Random();

e some members in some classes are static which means that they don’t have to be
instantiated to be used

o for example, all the methods in the java.lang.Math class are static

— you don't need to create an object reference variable whose type is Math in order to
use the methods in the Math class

—e.g., Math.abs(), Math.random()

e you use the name of the class preceding the dot operator, instead of the name of the
instance variable, in order to access the static members of the class

e e.g., Math.random() vs r.nextFloat() (where r is the instance variable of type
Random that we created above)

o that is why we can use main() without instantiating anything
i.e., public static void main()

cis20.1-fall2007-sklar-lecl.4 2

static modifier (2).

e constants, variables and methods can all be static

e except constructors
(since they are only used to instantiate, it doesn't make sense to have a static constructor)

o typically, constants are static

e example:

public class Coin {
public static final int HEADS=0;
public static final int TAILS=1;

} // end of Coin class

e we can now access Coin.HEADS and Coin.TAILS without instantiating and/or without
referring to a specific instance variable

cis20.1-fall2007-sklar-lecl.4 3

overriding methods.

e when you extend a class, you can override methods defined in the parent class by defining
them again in the child (and giving the child version different behavior)

e the rule is: the version of any method that is invoked is the definition closest to the leaf of
the tree

o if you want to refer to the version of the method in a class’s superclass, you use the super
reference

cis20.1-fall2007-sklar-lecl.4 4

overloading methods (1).

e in addition to changing precisely what a method does, you can also change the arguments
to that method

o this is very useful if you are changing the data type of data objects defined in the class

® you can create a new version of a method which has different arguments from the version
of the method defined in the class's superclass

o this is what happens when we use different versions of the print1ln() method:

int i = 5;

String s = "hello";
System.out.println(i);
System.out.println(s);

cis20.1-fall2007-sklar-lecl.4 5

overloading methods (2).

e in other words, you are using the same method name with formal parameters of different
types
e example:

— java.lang.System has-a variable called out,
which is-a java.io.PrintStream
— whose declarations include:

public void println();

public void println(boolean x);
public void println(char x);
public void println(double x);
public void println(float x);
public void println(int x);
public void println(Object x);
public void println(String x);

o these are all different ways of printing data, but the difference is the type of object being
printed

cis20.1-fall2007-sklar-lecl.4

other terminology...

® polymorphism

— “having many forms”

— lets us use different implementations of a single class

— we will talked about this later in relation to interfaces

— a polymorphic reference can refer to different types of objects at different times
® abstract class

— represents a generic concept in a class hierarchy

— cannot be instantiated — can only be extended

cis20.1-fall2007-sklar-lecl.4 7

example.

public class Quarter extends Coin {

// overload constructor
public Quarter() {
value = 25;
f1ip();
} // end of Quarter()

OR
public Quarter() {

super(25);
} // end of Quarter()

} // end of class Quarter

cis20.1-fall2007-sklar-lecl.4

references (1).

e when we declare a variable whose data type is a class, we are declaring an object reference
variable

o that variable refers to the location in the computer's memory where the actual object is
being stored

® an object reference variable and an object are two separate things

o declaration of an object reference variable:
Coin x;
e creation of an object (also called “construction”, “instantiation”):

x = new Coin();

cis20.1-fall2007-sklar-lecl.4 9

references (2).

e when you declare a variable as a primitive data type, the computer sets aside a fixed
amount of memory, based on the size of the data type

e when you declare a variable of any other data type (i.e., a class), you are actually declaring
a reference

e a reference is typically the size of an int or a long

e it stores an address or the location in the computer's memory of where the actual data will
be kept

e you can think of it like a telephone book

— the phone book has a bunch of addresses in it
— but not the actual buildings

— just the locations of buildings

cis20.1-fall2007-sklar-lecl.4 10

references (3).

o here's how it works inside the computer
e given the following declarations:

int i = 45;

String s = "hello";

e the memory looks something like this:
i s
°«—
e i is the label for the location in memory where the actual data is stored — in this case the
int 45

e s is the label for the location in memory where the address is stored; the address is the
location in memory where the actual data for s is stored

e in C, this is called a pointer
e we say that s points to or references the location in memory where the actual data for s is

stored

cis20.1-fall2007-sklar-lecl.4 11

references (4).

o the reference is actually a memory address, usually a long

e given our example on previous slide, the memory might look like this:

variable name | location in memory | value
i 837542 45
s 837543 837602
837544
837545
s[0] 837602 ’h’
s[1] 837603 e’
s[2] 837604 1’
s[3] 837605 1’
s[4] 837606 ‘o’

cis20.1-fall2007-sklar-lecl.4 12

references (5).

o let’s go back to the Coin example

e comment out the toString() method and re-run the example
e here's the output now:

i[0]=Coin@73d6a5
i[11=Coin@111£71
i[2]=C0in@273d3c
i[3]=Coin@256a7c
i[4]=Coin@720eeb
i[5]=C0in@3179c3
i[6]=Coin@310d42
i[7]1=Coin@5d87b2
i[8]=Coin@77d134
i[9]=Coin@47e553

these are the references of the array elements

we can see these reference values because we took out the toString() method — calling
System.out.println(pocket[i]) automatically coerces its argument (pocket [i])
to a String so it can print it; if there is no explicit toString() method in the class,
then a reference is the closest String representation

cis20.1-fall2007-sklar-lecl.4 13

references (6).

e when an object reference variable has been declared but the object it refers to has not
been created, then the object reference variable is called a null reference

o for example:

Coin x;
x.f1lipQ;

o will generate an error called a NullPointerException because the object which x refers
to has not been instantiated

@ you can use a constant called null to check if an object reference variable is null

o for example:

Coin x;

if (x !'= null) {
x.f1lip();

}

cis20.1-fall2007-sklar-lecl.4 14

references (7).

e an alias is an object reference variable that refers to an object that was previously
constructed and is already referred to by another object reference variable

o for example:
Coin x = new Coin(Q);
Coin y;

y=x;
y.flipQ;

e y is called an “alias” of x (and vice versa) because they both refer to the same location in
the computer’'s memory

cis20.1-fall2007-sklar-lecl.4 15

references (8).

e garbage collection is necessary when all references to an object are gone

e because when there are no object reference variables, then there is no way to know where
in memory an object is located

e Java handles this for you automatically
e the JVM periodically invokes automatic garbage collection while it is running

o all the memory that is allocated to an application but is not being used is “restored” so
that it can be re-allocated to the application later

e if you want to perform some garbage collection on a class that you create yourself, then
you would write a method called finalize () and whenever the automatic garbage
collection was invoked and cleaned up an object of your class type, then your finalize ()
method would be called

cis20.1-fall2007-sklar-lecl.4 16

references (9).

® when you pass objects as parameters (arguments) to a method, a reference is passed, not
the actual object

® so be careful about what changes!

® here's an example using three classes:
— Num
— ParameterTester
—ex4d

cis20.1-fall2007-sklar-lecl.4 17

public class Num {

private int value;

public Num(int update) {
value = update;

} // end of constructor

public void setValue(int update) {
value = update;

} // end of setValue()

public String toString() {
return value+"";

} // end of toString()

} // end of Num class

cis20.1-fall2007-sklar-lecl.4

references (10).

references (11).

public class ParameterTester {
public void changeValues(int f1, Num f2, Num £3) {
System.out.println("start call:\t"+
"F1="+f 14"\t E2="+f2+"\t£3="+f3);
1 =999;
£2.setValue(888);
£3 = new Num (777);
System.out.println("end call:\t"+
NE1="+f 14\t E2="+£ 2+ "\t £3="+f3);
} // end of changeValues()
} // end of class ParameterTester

public class ex4d {
public static void main(String[] args) {
ParameterTester tester = new ParameterTester();
int al = 111;
Num a2 = new Num(222);
Num a3 = new Num(333);
System.out.println("before call:\t"+
"al="+al+"\ta2="+a2+"\ta3="+a3);
tester.changeValues(al, a2, a3);
System.out.println("after call:\t"+
"al="+al+"\ta2="+a2+"\ta3="+a3);
} // end of main()
} // end of class ex4d

cis20.1-fall2007-sklar-lecl.4 19

e sample output:

before call: al=111
start call: f1=111
end call: £1=999
after call: al=111

cis20.1-fall2007-sklar-lecl.4

references (12).

a2=222 a3=333
£2=222 £3=333
£2=888 £3=777
a2=888 a3=333

20

comparing objects (1).

e comparing two Java objects is tricky
e you have to be careful of what you are comparing:

— is it the value of some member(s) of the class?

— or is it the reference? (like a pointer in C/C++)
® using == compares the references (addresses)
© which is not the same as comparing the values of member(s) of the class

o many classes have a method called compareTo() to compare the value of member(s) of
the class

cis20.1-fall2007-sklar-lecl.4 21

comparing objects (2).

e here's an example from the Coin class:
— comparing the value of the face member of two coins:

Coin coin0 = new Coin(10);
Coin coinl = new Coin(10);
if (coinO.getValue() == coinl.getValue()) {

System.out.println("coins O and 1 have the same value");

— versus comparing the references:

if (coin0 == coinl) {
System.out.println("coins 0 and 1 are the same");

}

cis20.1-fall2007-sklar-lecl.4

22

comparing objects (3).

e in order to compare the value of two Strings, we need to use the method
public int compareTo(String str)
from the java.lang.String class

o this method does a lexical comparison of its String argument with the current object
(i.e., its instantiated value)

e it returns an int as follows:
if the current object... ‘ then the method returns

is the same text as str ‘ 0
comes lexically before str |an int < 0 (e.g., -1)
comes lexically after str |an int > 0 (e.g., +1)

® using == to compare two Strings compares their addresses, NOT the values of the text
they store

e this is the same for comparing any two objects in Java
® most classes define a compareTo () method, just as most classes define a toString()

method

cis20.1-fall2007-sklar-lecl.4 23

comparing objects (4).

o for example:

public class ex13d {
public static void main(String[] args) {
String s1 = new String("hello");
String s2 = new String("hello");
System.out.println("si=["+s1+"]");
System.out.println("s2=["+s2+" ;
System.out.println("(s1 == s2) = " + (sl == 52));
System.out.println("s1.compareTo(s2)="+s1.compareTo(s2));
System.out.println("s2.compareTo(s1)="+s2.compareTo(s1));
} // end of main()
} // end of class ex13d

sample output:

si=[hello]
s2=[hello]
(s1 == s2) = false
s1.compareTo(s2)=0
s2. compareTo(s1)=0

cis20.1-fall2007-sklar-lecl.4

24

comparing objects (5).

@ so we could add to our Coin class:

public int compareTo(Coin coin) {
if (value == coin.getValue()) {
return 0;
}
else if (value < coin.getValue()) {
return -1;
}
else {
return 1;
}
} // end of compareTo()

cis20.1-fall2007-sklar-lecl.4 25

exception handling.

e example:
try {
i = System.in.read();
}
catch (IOException iox) {
System.out.println("there was an error: " + iox);
}

e try clause contains code which may generate an exception, i.e., an error

e catch clause contains code to execute in case the error happens; i.e., where to go if the
exception gets caught

cis20.1-fall2007-sklar-lecl.4

26

arrays (1).

e used to associate multiple instances of the same type of variable

e the “[1" indicates it's an array

e we can have arrays of anything (i.e., other data types)

e one example we've already used is String[], which is an array of String...

e visualize an array as a sequence of boxes, contiguous in the computer's memory, where
each box stores one instance of the type of data associated with that array:

o the boxes are numbered, starting with 0 and ending with the length of the array less one;

each number is called an index

o the indices for an array of 10 items can be visualized like this:

01234567289

cis20.1-fall2007-sklar-lecl.4 27

arrays (2).

e to use an array, first you must declare it:
int[] A;

e then you must instantiate it:
A = new int[10];

e or you can do both of these in one step:
int[] A = new int[10];

e then you can access its elements:
Af4]
(index=4, which is the 5th item in the array...)

e you can use this accessed item just like any single data element of that type, in this case
an int

o the number of items in the array is the variable A.length

cis20.1-fall2007-sklar-lecl.4

28

arrays (3).

® here's an example that stores in an array 5 random numbers between 0 and 100:

public class ex4a {
public static void main(String[] args) {
int[] A = new int[5];
for (int i=0; i<A.length; i++) {
A[i] = (int) (Math.random()*100);
¥
for (int i=0; i<A.length; i++) {
System.out.println("i["+i+"]="+A[i]);
} // end for i
} // end of main()
} // end of class exda

cis20.1-fall2007-sklar-lecl.4 29

two-dimensional arrays.

e arrays of arrays
e also called a two-dimensional array

e two-dimensional arrays are declared like this:
char[][] a2;

e and instantiated like this (for example for a 5x5 array):
a2 = new char[5][5];

e the first dimension is called row
e the second dimension is called column

® so the element in the i-th row and the j-th column is accessed like this:
a2 [5]

cis20.1-fall2007-sklar-lecl.4

30

arrays of objects (1).

e we can have arrays of anything — i.e., other data types — like classes

o for example, we can have an array of Coin, using the class from last lecture

e the Coin[] variable contains a list of addresses

e as with int or char arrays, first you must declare and instantiate the array:
Coin[] pocket = new Coin[10];

e but because the array elements are not primitive data types, you must also instantiate each
array entry:
for (int i=0; i<pocket.length; i++) {
pocket[i] = new Coin();
} // end for i

cis20.1-fall2007-sklar-lecl.4 31

arrays of objects (2).

public class ex4b {
public static void main(String[] args) {
final int NUMCOINS = 10;
Coin[] pocket = new Coin[NUMCOINS];
int headcount = 0, tailcount = 0;
// instantiate each of the coins in the array
for (int i=0; i<pocket.length; i++) {
pocket[i] = new Coin();
} // end for i
// print the array
for (int i=0; i<pocket.length; i++) {
System.out.println("i["+i+"]="+pocket[i]);
} // end for i
} // end of main()
} // end of class ex4b

cis20.1-fall2007-sklar-lecl.4

32

arrays of objects (3).

public class Coin {
public final int HEADS = 0;
public final int TAILS =
private int face;
public Coin() {
£1ip(O;
} // end of Coin()
public void flip() {
face = (int) (Math.random()*2);
} // end of flip()
public int getFace() {
return face;
} // end of getFace()
public String toString() {
String faceName;
if (face == HEADS) {

faceName = "heads";
else {
faceName = "tails";

return faceName;
} // end of toString()
} // end of class Coin

cis20.1-fall2007-sklar-lecl.4

arrays of objects (4).

e sample output:
i[0]=tails
i[1]=tails
i[2]=heads
i[3]=tails
i[4]=tails
i[6]=heads
i[6]=tails
i[7]=heads
i[8]=heads
i[9]=heads

L]

L]

e but why do you have to instantiate twice?

e because when you instantiate the first time:
Coin[] pocket = new Coin[10];

you are only allocating memory for references for each Coin array element

cis20.1-fall2007-sklar-lecl.4

34

vectors (1).

e Java has a nice class which handles arrays dynamically: java.util.Vector

o the elements of a Vector can be any type of Java Object

e note that when you fetch an element from a vector, you have to cast it from a generic
object to the specific class type the object should be (see example below)

e some methods:

— constructor: Vector();

—public void addElement(Object obj);

—public void insertElementAt(Object obj, int index);
—public void removeElementAt(int index);

— public void removeAllElements();

—public void setElementAt(Object obj, int index);
—public Object elementAt(int index);

—public int size();

cis20.1-fall2007-sklar-lecl.4

vectors — example.

import java.util.*;
import java.io.*;

public class exdc {

public static void main(String[] args) {
Vector pocket;
int npocket = Integer.parseInt(args[0]);

pocket = new Vector(npocket);
for (int i=0; i<npocket; i++) {
pocket.addElement (new Coin());

for (int i=0; i<npocket; i++) {
Coin tmp = (Coin)pocket.elementAt(i);
System.out.print(tmp + " ");
b3
System.out.println();
} // end of main()

} // end of class exé4c

cis20.1-fall2007-sklar-lecl.4

36

vectors — things to notice.

e notice that we instantiate twice...

® notice that we instantiate in the call to pocket.addElement ():

pocket.addElement (new Coin());

® notice that we cast the return from pocket.elementAt ():

Coin tmp = (Coin)pocket.elementAt(i);

cis20.1-fall2007-sklar-lecl.4

streams (1).

e we've drawn a picture of input and output many times this semester:
input — — output

e up to now, input has been from the keyboard and output has been to the screen
e today we will read input from “text files” and write output to “text files”
e input and output flow from and to streams

— a stream is an ordered sequence of bytes
— streams flow from a source to a destination
— with input, the source is the keyboard and the destination is a program

— with output, the source is a program and the destination is the screen

cis20.1-fall2007-sklar-lecl.4

38

streams (2).

o thus there are two categories of streams:

— input streams

— output streams
e streams can also be subdivided based on their content:

— character streams (i.e., text)

— byte streams (i.e., binary data)
o or their usage:

— data streams (e.g., String in memory, file on disk)

— processing streams (manipulation of a data stream)

cis20.1-fall2007-sklar-lecl.4

streams (3).

e in order to handle streams in Java, we need several classes from the java.io package:
o classes that handle byte streams

— InputStream «— FileInputStream

— OutputStream « FileOutputStream < PrintStream
o classes that handle character streams

— Reader «+ BufferedReader

—Writer < BufferedWriter
o for example, in java.lang.System:

— System. in is an InputStream

— System.out is a PrintStream

cis20.1-fall2007-sklar-lecl.4

40

files (1).

o typically, there are three processing steps when using files:
1. open
2. read, write or update
3. close
o we'll only talk about read and write in Java (not update)
e in order to implement file 1/0 in Java, we need several classes from the
java.io package:
—FileReader
—FileWriter
— BufferedReader
— BufferedWriter

— PrintWriter

cis20.1-fall2007-sklar-lecl.4

41

files — reading example.

import java.io.*;
public class ex4f {

public static void main(String[] args) {

String line = "";

// read data from file into program variables

try {
FileReader fr = new FileReader("data.dat");
BufferedReader infile = new BufferedReader(fr);
line = infile.readLine();
infile.close();

catch(FileNotFoundException fnfx) {
System.out.println("file not found: data.dat");

catch(IOException iox) {
System.out.println(iox);

System.out.println("line=["+line+"]");
} // end of main()

} // end of ex4f class

cis20.1-fall2007-sklar-lecl.4 2

files — writing example.

import java.io.*;
public class exdg {
public static void main(String[] args) {
try {
FileWriter fw = new FileWriter("myfile.dat");
PrintWriter outfile = new PrintWriter(new BufferedWriter(fw));
outfile.println("hello world");

outfile.close();

catch(IOException iox) {
System.out.println(iox);

} // end of main() method

} // end of ex4g class

cis20.1-fall2007-sklar-lecl.4

files — using them.

o the simple model for programs that work with data files is to:
. open the data file for reading

. read the contents of the data file into program variables
. close the data file

. manipulate the values in the program variables

. open the data file for writing

. write the manipulated values to the data file

~N O B W N =

. close the data file
e useful input class: StringTokenizer

e useful output class: DecimalFormat

cis20.1-fall2007-sklar-lecl.4 44

utility classes: java.util.StringTokenizer.

e used to break up a string into “tokens”, i.e. components
e each token is separated by a “delimiter”

o default delimiter is whitespace

® but you can set another value for delimiter

o primary method used: public String nextToken();
e example:

line = infile.readLine();
tokenizer = new StringTokenizer(line);
name = tokenizer.nextToken();
try {
units
price
}
catch(NumberFormatException nfx) {
System.out.println("error in input; line ignored: " + line);

Integer.parselnt(tokenizer.nextToken());
Float.parseFloat (tokenizer.nextToken());

cis20.1-fall2007-sklar-lecl.4 45

utility classes: java.text.DecimalFormat.

used to format decimal numbers

construct an object that handles a format

use that format to output decimal numbers

formatting patterns include:

— 0 used to indicate that a digit should be printed, or 0 if there is no digit in the number
(i.e., leading and trailing zeros)

— # used to indicate that if there is a digit in the number, then it should be printed;
indicates rounding if used to the right of the decimal point

example:

DecimalFormat fmt = new DecimalFormat("#.00");
double price;
System.out.println("price = $" + fmt.format(price));

cis20.1-fall2007-sklar-lecl.4 46

exercises.

e start with the example class ex4a that stores in an array 5 random numbers between 0 and

100

e write a method that finds the minimum number and returns its index;
modify the main to call the method and print out the smallest number

e modify the main to ask the user how big she wants the array to be,
read the user’s answer from the keyboard as a String,
convert the String to an int and
use it as the size of the array

e write a method that writes the contents of the array to a file;
modify the main to call this method

cis20.1-fall2007-sklar-lecl.4 47

