
coordination in multi-agent systems

• definitions

• taxonomy

• applications (focus on implemented multi-robot systems)
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multi-agent systems vs distributed systems

• distributed systems implies centralized control; multi-agent system implies autonomous

control

• agents in distributed systems are assumed to be benevolent and cooperative

• agents in a multi-agent system are assumed to be selfish; they could be both (or either)

cooperative and/or competitive

• in an MAS, cooperation is not governed; it is a result of coordination

• note that coordination is not necessarily a feature of every MAS
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multi-agent system, society

• “sphere of influence” [Jennings, 2000]

when spheres overlap, one agent may interfere with the achievements of another

• dependent vs independent [Sichman and Demazeau, 1995]

– independent:

when agents do not rely on each other at all; actions are chosen and performed

separately.

If agent p wants to achieve goal state G1, it can do so without help from agent q; and

if agent q wants to achieve goal state G2, it can do so without help from p. p and q

can each achieve their goals without interacting; and if they do interact, this will have

no effect on their goals. This also means that q’s actions cannot prevent p from

achieving its goal (and vice versa).

– dependent:

when agents rely on each other to achieve their goals.

agent p cannot, for example, achieve goal state G1 without help or cooperation from

agent q.
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• types of dependencies [Sichman and Demazeau, 1995]

– direct dependency :

must be resolved for p to achieve G1

– indirect dependency :

less critical; p could achieve G1 without q (maybe less efficiently or quickly)

– unilateral :

one agent is dependent on another, but not vice versa;

p needs q to achieve G1, but q does not need p to achieve G2

– reciprocal :

two agents depend on each other to achieve different goals;

p needs q to achieve G1, and q needs p to achieve G2

– mutual :

two agents depend on each other to achieve same goals

p needs q to achieve G1, and q needs p to achieve G1 (same goal)
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interactions in multi-agent systems

• agent interactions can be direct or indirect

• “real” systems often use a combination

• direct:

agents formulate messages and deliberately send them to other(s)

e.g., peer-to-peer or broadcast

• indirect:

messages are not sent explicitly to particular agents

e.g., environmental (tacit agreements or stigmergy) or brokered
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process of interaction

• interaction = communication + decision-making

• three phases:

1. agents decide individually what to do

2. send messages reflecting individual decisions (proposals)

3. discuss proposals amongst (other) agents

4. may require additional communication

5. (possibly) revise initial decisions about what to do

• plan consideration — deciding what to achieve

• plan formation — deciding how to achieve it

• in a centralized system: “leader” agent decides plans for all agents and transmits plans;

there is no individual plan consideration or formation

• in a decentralized system: plan consideration and formation occurs at the level of the

individual agent

• in a hybrid system: some combination of local/central plan formation/consideration occurs
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message content

• binary / Boolean

• scalar

• object

• vector of scalars

• vector of objects
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tacit agreement

• minimal interaction mechanism

• no explicit communication

• social norms dictate behavior

• can control access based on which agent(s) are privvy to the agreement

• e.g., pedestrian traffic
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environmental cues or “stigmergy”

• agents signal to each other by modifying their (shared) environment

• message content usually simple

• binary = presence/absence of a signal

• scalar = strength of signal

• no control over access — all agents have potential to receive message

• but access is limited to agent(s) in physical vicinity of message

• message has a “lifetime”; message/signal may decay and disappear over time

• e.g., ants and pheromone trails
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signal broadcasting

• agents transmit messages to anyone within range; there is no specific, designated recipient

• access limited to agents within transmission range

• can reach a wider set of agents than stigmergy, depending on physical distribution of

agents and communication means

• can have a lifetime, if retransmission does not occur

• e.g., announcements on the subway

mas-fall2008-sklar-coordination 11



simple auction

• simplest market mechanism

• agents “bid” on single items, typically tasks or resources

• bid consists of a number (“how many”) and an indication of which item (or task or

resouce) bid applies to

• often used for “role allocation” or “task allocation” in a multi-agent system

• hybrid approach: local plan consideration, global task assignment

• e.g., 3 red dogs
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combinatorial auction

• more complex version of simple auction since agents can bid on “packages” of items

• bid consists of a vector of simple bids (see simple auction, above)

• vector represents the package

• hybrid approach: local plan consideration, global task assignment

• e.g., 3 red dogs and 4 blue cats
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negotiation

• iterative interaction in which agents can go back and forth with bids

• frequently brokered

• e.g.:

1. p’s bid: I would like 3 red dogs

2. q’s bid: I would like 5 red dogs

3. broker’s internal deliberation: p has priority, so I’ll grant p’s bid but since I only

have 5 dogs, I’ll have to short-change q

4. broker’s response to p: will you accept 3 red dogs?

5. broker’s response to q: will you accept 2 red dogs?

6. p: okay

7. q: no!!

8. broker’s deliberation: I could make q happy by giving all the dogs to q, but

then p will be unhappy. Let me try a modified response in which both agents are

offered less than what they requested.

9. broker’s response to p: will you accept 2 red dogs?
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10.broker’s response to q: will you accept 3 red dogs?

11.p: well, it’s not optimal but I guess I don’t mind

12.q: no, I wanted 5 dogs!! (pout pout)

13.broker’s response to p: will you accept 1 red dog?

14.broker’s response to q: will you accept 4 red dogs?

15.p: okay

16.q: okay
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argumentation

• also iterative, like negotiation

• but agents (can) offer reasons for their bids

1. p’s bid: I would like 3 red dogs

2. q’s bid: I would like 5 red dogs

3. broker’s internal deliberation: p has priority, so I’ll grant p’s bid but since I only

have 5 dogs, I’ll have to short-change q

4. broker’s response to p: will you accept 3 red dogs?

5. broker’s response to q: will you accept 2 red dogs because I only have 5?

6. p: okay

7. q: no, I wanted 5 dogs!! (pout pout)

8. broker’s deliberation: I could make q happy by giving all the dogs to q, but

then p will be unhappy. Let me try a modified response in which both agents are

offered less than what they requested.

9. broker’s response to p: will you accept 2 red dogs?

10.broker’s response to q: will you accept 3 red dogs?
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11.p: well, it’s not optimal but I guess I don’t mind

12.q: no, I wanted 5 dogs!! (pout pout)

13.broker’s response to p: will you accept 1 red dog?

14.broker’s response to q: will you accept 4 red dogs?

15.p: okay

16.q: okay
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taxonomy of interaction/coordination mechanisms

interaction message decision messaging synchro-
classification medium content mechanism sequence nization

tacit none none distrib- n/a none
agreement uted

environmental environ- distrib-
cues mental scalar uted continual none

signal broadcast binary distrib- continual none

broadcasting /scalar uted

simple brokered scalar hybrid once turn-taking

auction (or in (with
rounds) broker)

combinatorial brokered vector hybrid in rounds turn-taking
auction (with

of scalars broker)

negotiation peer-to-peer vector distrib- in rounds turn-taking
/brokered of scalars uted or (with peers

or object hybrid or broker)

argumentation peer-to-peer object distrib- in rounds turn-taking

uted (with peers)
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applications: tacit agreements — formation control

• formation control methodologies

– leader-follower —

one agent is designated as the leader and the rest follow it

– virtual structure —

centralized controller synchronizes actions of all agents to maintain a particular shape

– behavioral —

individual agents are given rules such as avoid others or approach others; result is

desired formation

• [Fierro et al., 2002] experimented with three different control algorithms in simulation:

– separation-bearing —

agent follows another while keeping a specified distance away at a certain relative

bearing

– separation-distance-to-obstacle —

agent follows another while keeping away form obstacles

– separation-separation —

agents follows two others while staying specified distances away from each
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• [Balch and Arkin, 1995] and [Balch and Arkin, 1998] experimented with formation control

algorithms in simulation and robots:

– formations: lines, columns, diamonds, wedges (V-shaped)

– two-step algorithm: agent perceives where it should be in the formation (relative to its

current location in relation to other agents), then it moves into position to maintain

formation

– hybrid approach: robots (sometimes) broadcast their position information

– results provided recommendations on different formations for achieving different tasks
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applications: tacit agreements — coordinated map building

• [Yamauchi, 1998]:

– agents independently determine “frontier” cells and move to the closest ones

– no explicit coordination mechanism

• Centibots [Konolige et al., 2004]

– agents explored independently

– then, agents merged maps
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applications: tacit agreements — other methods

• locker-room agreements

– in RoboCup soccer simulator [Stone and Veloso, 1998]

– agents agree a priori on a set of roles and strategies for team members and changes in

environment that would signal which roles/strategies to employ

• social norms

– [Shoham and Tennenholtz, 1992a, Shoham and Tennenholtz, 1992b]

– system contains inherent motivation for agents to conform to “norms”

– agents can evaluate conformity of other agents, e.g., tally how many agents have made

particular choices

– norms are determined dynamically instead of a priori (like locker-room agreements)
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applications: electronic institutions

• [Esteva et al., 2001] present a structure for organizing a multi-agent system

• includes software packages for designing, testing and model-checking (EIDE, ISLANDER,

AMELIE,...) [Esteva et al., 2002]

• electronic institution consists of:

– roles —

agents, defined according to characteristic (typically task-oriented) behavior categories

– dialogic framework —

communication language, ontology and locution rules

– scene —

series of locutions

– performative structure —

series of scenes

– norms —

“commitments, obligations and rights” of agents
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applications: environmental cues — ant systems

• classic example: [Dorigo et al., 1996]

• “simulated agents” (ants) solve traveling salesman problem (TSP)

• cities are represented as nodes in a graph; roads between cities are links between nodes

• ants traverse links and leave “pheromone” (chemical) trails

• more-travelled links have more pheromone

• ants are attracted to pheromone

• solution emerges

• pheromone decays over time; old trails essentially disappear

• algorithmic parameters/variations allow modification of decay rate, amount of attraction,

etc

• [McLurkin, 1995] constructed small robots but never implemented pheromone trails

• [Svennebring and Koenig, 2004] built single ant-robot that left a trail
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applications: environmental cues — other methods

• ALN

– [Kube and Zhang, 1992] experimented in simulation and robots

– adaptive logic network (ALN): neural network architecture that recognizes “perceptual

cues” indicating changes in the environment

– recognized states triggers behavioral responses that result in coordinated activity

• Tron

– [Funes et al., 1998] built video game in which agents left “light trails” (ala Tron movie)

– agents were controlled by genetic programs

– agents played humans, behaviors co-evolved

– [Sklar et al., 2001] conducted follow-up experiments in which agents were trained using

database of human interactions; agents were controlled by neural networks
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applications: signal broadcasting

• [Yanco and Stein, 1993]

– experimented with simulation (3 agents) and robots (2 agents)

– implemented leader-follower behavior

– leader sends signals to follower(s)

– leader interfaces with human “instructor” who provides “rewards” for desirable behavior

• ALLIANCE [Parker, 1998, Parker, 2000]

– experiments with robots

– dynamic task allocation, emphasized robustness

– team can recover from partial (or total) robot or communication failures

– two behaviors:

∗ impatience — take over others’ tasks when they are not being achieved

∗ acquiescence — release their own tasks when they are not being achieved
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• embodied evolution [Watson et al., 1999]

– experiments with robots

– devised special arena with continuous power supply

– evolution occurs on-board the robots

– robots seek a light source

– robots are controlled by a perceptron

– robots broadcast their weights: the more light they sense, the more frequently they

broadcast

• broadcast of local eligibility (BLE) [Werger and Mataric, 2000]

– cooperative multi-robot observation of multiple moving targets (CMOMMT)

– robots exchange “fitness” information, via broadcast, to determine which agent is most

fit to accomplish given task

– less fit robots inhibit their tracking behavior
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• honey bee emulation [Vaughan et al., 2000]

– robots broadcast “global crumb list” and maintain “private crumb list”

– crumb list is a time-sequenced list of headings and positions

– emulates bees’ “waggle dance” by broadcasting private crumb list when a resource is

found

• zone surveillance [Saffiotti et al., 2000]

– team of robots is viewed like one very flexible and capable agent

– team tracks and covers a target by distributing “zones” of responsibility

– robots transmit location and estimated velocity of target (when they can see it)

– “desirability” function assigns quantitative preferences to robots’ actions

– experiments used three schemes:

∗ no communication

∗ local communication (*works best)

∗ global communication (sensitive to failure and also “little league” effect)
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• PC-MVERT [Kalra et al., 2004]

– “passive coordination”

– robots develop plans using look-ahead of several steps

– robots broadcast their current plan

– robots coordinate internally by comparing/evaluating their plan with others’ received

– works better than not broadcasting plans

– other experiments included: “tight”, “planned”, “computationally feasible”

coordination mechanisms
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applications: auction mechanisms

• distinction between simple and combinatorial auctions is (often) blurred in robot

applications

• Contract Net [Smith, 1977, Smith and Davis, 1980]

– most widely used auction-based protocol in robot systems

– TRACONET [Sandholm, 1993, Sandholm, 1998a, Sandholm, 1998b]: vehicle routing

problem; proved that exchanging sets of tasks can help avoid local minima in solution

space

– Traderbots [Dias and Stentz, 2000, Dias and Stentz, 2002]: distributed traveling

salesman problem (DTSP) explored; multiple agents share task of visiting multiple

cities, bidding against each other for assignment to particular cities

– extended work: [Dias et al., 2004]

• MURDOCH [Gerkey and Mataric, 2002]: experiments with auction mechanisms for robot

team coordination, encompassing dynamic task allocation; focused on task allocation

optimization and robustness

mas-fall2008-sklar-coordination 30



applications: negotiation

• monotonic concession protocol [Rosenschein and Zlotkin, 1994]: agreements over task

allocations can be guaranteed if each agent makes a concession at each stage in the

negotiation by offering a deal that is better for the other agent

• [Faratin, 2000, Faratin et al., 2000] extended this by ensuring that agents’ concessions,

while better for others, are not worse for themselves; takes advantage of different agents

placing different utilities on different aspects of negotiated good

• Teamcore [Tambe, 2004]

– general assignment problem (GAP)

– “Machinetta” strategy, based on principle of “teamwork”, in which complex tasks

(“roles”) are allocated to best-suited team members in order to optimize team’s

objectives (NP-hard problem)

– approximates analytically using DCOP (distributed constraint optimization problem)

technique

– roles (complex tasks) are represented as “tokens”; these are passed around to agents;

agents accept tokens when they decide that they have the capabilities to complete

tasks associated with the token
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applications: argumentation

• theoretical work surveyed in [Rahwan et al., 2003]

• to date, not implemented in multi-robot system

• implemented in mixed-initiative system [Ferguson, 1995]

• decision-making and medical applications [Fox and Das, 2000, Fox et al., 1997]
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