coordination in multi-agent systems

e definitions
e taxonomy

e applications (focus on implemented multi-robot systems)
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multi-agent systems vs distributed systems

e distributed systems implies centralized control; multi-agent system implies autonomous
control

e agents in distributed systems are assumed to be benevolent and cooperative

e agents in a multi-agent system are assumed to be selfish; they could be both (or either)
cooperative and/or competitive

e in an MAS, cooperation is not governed; it is a result of coordination

e note that coordination is not necessarily a feature of every MAS
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multi-agent system, society

e “sphere of influence” [Jennings, 2000]
when spheres overlap, one agent may interfere with the achievements of another

e dependent vs independent [Sichman and Demazeau, 1995|

— independent:
when agents do not rely on each other at all; actions are chosen and performed
separately.
If agent P wants to achieve goal state (G1, it can do so without help from agent Q; and
if agent Q wants to achieve goal state (5o, it can do so without help from P. P and Q
can each achieve their goals without interacting; and if they do interact, this will have
no effect on their goals. This also means that Q's actions cannot prevent P from
achieving its goal (and vice versa).

— dependent:
when agents rely on each other to achieve their goals.
agent P cannot, for example, achieve goal state (G; without help or cooperation from
agent Q.

mas-fall2008-sklar-coordination 3




e types of dependencies [Sichman and Demazeau, 1995]

— direct dependency:
must be resolved for P to achieve (G

— indirect dependency:
less critical; P could achieve G'; without Q (maybe less efficiently or quickly)

— unilateral:
one agent is dependent on another, but not vice versa;
P needs Q to achieve (G1, but Q does not need P to achieve Go

— reciprocal:
two agents depend on each other to achieve different goals;
P needs Q to achieve (G1, and Q needs P to achieve G5

— mutual:
two agents depend on each other to achieve same goals
P needs Q to achieve G, and Q needs P to achieve G| (same goal)
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interactions in multi-agent systems

e agent interactions can be direct or indirect
e “real” systems often use a combination

e direct:
agents formulate messages and deliberately send them to other(s)
e.g., peer-to-peer or broadcast

e indirect:
messages are not sent explicitly to particular agents
e.g., environmental (tacit agreements or stigmergy) or brokered
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process of interaction

e interaction = communication + decision-making
e three phases:

agents decide individually what to do
send messages reflecting individual decisions (proposals)

discuss proposals amongst (other) agents

B o=

may require additional communication

5. (possibly) revise initial decisions about what to do
e plan consideration — deciding what to achieve
e plan formation — deciding how to achieve it

® in a centralized system: “leader” agent decides plans for all agents and transmits plans;
there is no individual plan consideration or formation

e in a decentralized system: plan consideration and formation occurs at the level of the
individual agent

e in a hybrid system: some combination of local/central plan formation/consideration occurs
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message content

e binary / Boolean
e scalar
e object
e vector of scalars

e vector of objects
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tacit agreement

e minimal interaction mechanism

e no explicit communication

e social norms dictate behavior

e can control access based on which agent(s) are privvy to the agreement

e e.g., pedestrian traffic
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environmental cues or “stigmergy”

e agents signal to each other by modifying their (shared) environment

e message content usually simple

e binary = presence/absence of a signal

e scalar = strength of signal

e no control over access — all agents have potential to receive message

e but access is limited to agent(s) in physical vicinity of message

e message has a “lifetime”; message/signal may decay and disappear over time

e e.g., ants and pheromone trails
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signal broadcasting

e agents transmit messages to anyone within range; there is no specific, designated recipient
e access limited to agents within transmission range

e can reach a wider set of agents than stigmergy, depending on physical distribution of
agents and communication means

e can have a lifetime, if retransmission does not occur

® e.g., announcements on the subway
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simple auction

e simplest market mechanism
e agents "bid" on single items, typically tasks or resources

e bid consists of a number (“how many”) and an indication of which item (or task or
resouce) bid applies to

e often used for “role allocation” or “task allocation” in a multi-agent system
e hybrid approach: local plan consideration, global task assignment

e e.g., 3 red dogs
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combinatorial auction

e more complex version of simple auction since agents can bid on “packages” of items
e bid consists of a vector of simple bids (see simple auction, above)

e vector represents the package

e hybrid approach: local plan consideration, global task assignment

e e.g., 3 red dogs and 4 blue cats
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negotiation

e iterative interaction in which agents can go back and forth with bids
e frequently brokered
eecg.:

1. P's bid: | would like 3 red dogs
2. Q's bid: | would like 5 red dogs

3. BROKER’S internal deliberation: P has priority, so I'll grant P's bid but since | only
have 5 dogs, I'll have to short-change Q

4. BROKER’S RESPONSE TO P: will you accept 3 red dogs?
5. BROKER’S RESPONSE TO Q: will you accept 2 red dogs?
6. P: okay

7. Q: noll

8.

BROKER'S DELIBERATION: | could make Q happy by giving all the dogs to Q, but
then P will be unhappy. Let me try a modified response in which both agents are
offered less than what they requested.

9. BROKER’S RESPONSE TO P: will you accept 2 red dogs?
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10.BROKER’S RESPONSE TO Q: will you accept 3 red dogs?
11.p: well, it's not optimal but | guess | don't mind

12.Q: no, | wanted 5 dogs!! (pout pout)

13.BROKER’S RESPONSE TO P: will you accept 1 red dog?
14 BROKER’'S RESPONSE TO Q: will you accept 4 red dogs?
15.P: okay

16.Q: okay
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argumentation

e also iterative, like negotiation

e but agents (can) offer reasons for their bids

1.
2.
. BROKER’S internal deliberation: P has priority, so I'll grant P's bid but since | only

9.

cO N o 0 B

P’'s bid: | would like 3 red dogs
Q's bid: | would like 5 red dogs

have 5 dogs, I'll have to short-change Q

BROKER’S RESPONSE TO P: will you accept 3 red dogs?

BROKER’S RESPONSE TO Q: will you accept 2 red dogs because | only have 57?
P: okay

Q: no, | wanted 5 dogs!! (pout pout)

BROKER’S DELIBERATION: | could make Q happy by giving all the dogs to Q, but
then P will be unhappy. Let me try a modified response in which both agents are
offered less than what they requested.

BROKER’'S RESPONSE TO P: will you accept 2 red dogs?

10.BROKER’S RESPONSE TO Q: will you accept 3 red dogs?
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11.p: well, it's not optimal but | guess | don't mind

12.Q: no, | wanted 5 dogs!! (pout pout)

13.BROKER’S RESPONSE TO P: will you accept 1 red dog?
14 BROKER’'S RESPONSE TO Q: will you accept 4 red dogs?
15.P: okay

16.Q: okay
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taxonomy of interaction/coordination mechanisms

interaction  message  decision messaging synchro-
classification | medium content  mechanism sequence nization
tacit none none distrib- n/a none
agreement uted
environmental | environ- distrib-
cues mental scalar uted continual  none
signal broadcast binary distrib- continual  none
broadcasting /scalar uted
simple brokered scalar hybrid once turn-taking
auction (or in (with
rounds) broker)
combinatorial | brokered vector hybrid in rounds  turn-taking
auction (with
of scalars broker)
negotiation peer-to-peer vector distrib- in rounds  turn-taking
/brokered  of scalars uted or (with peers
or object hybrid or broker)
argumentation | peer-to-peer object distrib- in rounds  turn-taking
uted (with peers)
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applications: tacit agreements — formation control

e formation control methodologies

— leader-follower —

one agent is designated as the leader and the rest follow it
— virtual structure —

centralized controller synchronizes actions of all agents to maintain a particular shape
— behavioral —

individual agents are given rules such as avoid others or approach others; result is
desired formation

e [Fierro et al., 2002] experimented with three different control algorithms in simulation:

— separation-bearing —
agent follows another while keeping a specified distance away at a certain relative
bearing

— separation-distance-to-obstacle —
agent follows another while keeping away form obstacles
— separation-separation —
agents follows two others while staying specified distances away from each
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e [Balch and Arkin, 1995] and [Balch and Arkin, 1998] experimented with formation control
algorithms in simulation and robots:
— formations: lines, columns, diamonds, wedges (V-shaped)

— two-step algorithm: agent perceives where it should be in the formation (relative to its
current location in relation to other agents), then it moves into position to maintain
formation

— hybrid approach: robots (sometimes) broadcast their position information

— results provided recommendations on different formations for achieving different tasks
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applications: tacit agreements — coordinated map building

e [Yamauchi, 1998|:

— agents independently determine “frontier” cells and move to the closest ones

— no explicit coordination mechanism
e Centibots [Konolige et al., 2004]

— agents explored independently

— then, agents merged maps
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applications: tacit agreements — other methods

® locker-room agreements

— in RoboCup soccer simulator [Stone and Veloso, 1998]
— agents agree a priori on a set of roles and strategies for team members and changes in

environment that would signal which roles/strategies to employ

e social norms

— [Shoham and Tennenholtz, 1992a, Shoham and Tennenholtz, 1992b]
— system contains inherent motivation for agents to conform to “norms”

— agents can evaluate conformity of other agents, e.g., tally how many agents have made
particular choices

— norms are determined dynamically instead of a priori (like locker-room agreements)
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applications: electronic institutions

e [Esteva et al., 2001] present a structure for organizing a multi-agent system

e includes software packages for designing, testing and model-checking (EIDE, ISLANDER,
AMELIE,...) [Esteva et al., 2002]

e electronic institution consists of:
— roles —
agents, defined according to characteristic (typically task-oriented) behavior categories

— dialogic framework —
communication language, ontology and locution rules

— scene —
series of locutions

— performative structure —
series of scenes

— norms —
“commitments, obligations and rights” of agents
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applications: environmental cues — ant systems

e classic example: [Dorigo et al., 1996]

e “simulated agents” (ants) solve traveling salesman problem (TSP)

e cities are represented as nodes in a graph; roads between cities are links between nodes
e ants traverse links and leave “pheromone” (chemical) trails

e more-travelled links have more pheromone

e ants are attracted to pheromone

e solution emerges

e pheromone decays over time; old trails essentially disappear

e algorithmic parameters/variations allow modification of decay rate, amount of attraction,
etc

e [McLurkin, 1995] constructed small robots but never implemented pheromone trails

e [Svennebring and Koenig, 2004] built single ant-robot that left a trail

mas-fall2008-sklar-coordination 24




applications: environmental cues — other methods

o ALN

— [Kube and Zhang, 1992] experimented in simulation and robots

— adaptive logic network (ALN): neural network architecture that recognizes “perceptual
cues” indicating changes in the environment

— recognized states triggers behavioral responses that result in coordinated activity
e Tron

— [Funes et al., 1998] built video game in which agents left “light trails” (ala Tron movie)
— agents were controlled by genetic programs
— agents played humans, behaviors co-evolved

— [Sklar et al., 2001] conducted follow-up experiments in which agents were trained using
database of human interactions; agents were controlled by neural networks
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applications: signal broadcasting

e [Yanco and Stein, 1993]

— experimented with simulation (3 agents) and robots (2 agents)
— implemented leader-follower behavior
— leader sends signals to follower(s)

— leader interfaces with human “instructor” who provides “rewards” for desirable behavior
e ALLIANCE [Parker, 1998, Parker, 2000]

— experiments with robots

— dynamic task allocation, emphasized robustness

— team can recover from partial (or total) robot or communication failures
— two behaviors:

x impatience — take over others’ tasks when they are not being achieved

x acquiescence — release their own tasks when they are not being achieved
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e embodied evolution [Watson et al., 1999]

— experiments with robots

— devised special arena with continuous power supply
— evolution occurs on-board the robots

— robots seek a light source

— robots are controlled by a perceptron

— robots broadcast their weights: the more light they sense, the more frequently they
broadcast

e broadcast of local eligibility (BLE) [Werger and Mataric, 2000]

— cooperative multi-robot observation of multiple moving targets (CMOMMT)

— robots exchange “fitness” information, via broadcast, to determine which agent is most
fit to accomplish given task

— less fit robots inhibit their tracking behavior
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e honey bee emulation [Vaughan et al., 2000]

— robots broadcast “global crumb list” and maintain “private crumb list”

— crumb list is a time-sequenced list of headings and positions

— emulates bees’ “waggle dance” by broadcasting private crumb list when a resource is
found

e zone surveillance [Saffiotti et al., 2000]

— team of robots is viewed like one very flexible and capable agent

— team tracks and covers a target by distributing “zones” of responsibility

— robots transmit location and estimated velocity of target (when they can see it)
— “desirability” function assigns quantitative preferences to robots’ actions

— experiments used three schemes:

* No communication
* local communication (*works best)

* global communication (sensitive to failure and also “little league” effect)
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e PC-MVERT [Kalra et al., 2004]

— “passive coordination”

— robots develop plans using look-ahead of several steps

— robots broadcast their current plan

— robots coordinate internally by comparing/evaluating their plan with others’ received
— works better than not broadcasting plans

— other experiments included: “tight”, “planned”, “computationally feasible”
coordination mechanisms
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applications: auction mechanisms

e distinction between simple and combinatorial auctions is (often) blurred in robot
applications

e Contract Net [Smith, 1977, Smith and Davis, 1980]

— most widely used auction-based protocol in robot systems

— TRACONET [Sandholm, 1993, Sandholm, 1998a, Sandholm, 1998b]: vehicle routing
problem; proved that exchanging sets of tasks can help avoid local minima in solution
space

— Traderbots [Dias and Stentz, 2000, Dias and Stentz, 2002|: distributed traveling

salesman problem (DTSP) explored; multiple agents share task of visiting multiple
cities, bidding against each other for assignment to particular cities

— extended work: [Dias et al., 2004]

e MURDOCH [Gerkey and Mataric, 2002]: experiments with auction mechanisms for robot
team coordination, encompassing dynamic task allocation; focused on task allocation
optimization and robustness
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applications: negotiation

e monotonic concession protocol [Rosenschein and Zlotkin, 1994|: agreements over task
allocations can be guaranteed if each agent makes a concession at each stage in the
negotiation by offering a deal that is better for the other agent

e [Faratin, 2000, Faratin et al., 2000] extended this by ensuring that agents’ concessions,
while better for others, are not worse for themselves; takes advantage of different agents
placing different utilities on different aspects of negotiated good

e Teamcore [Tambe, 2004]

— general assignment problem (GAP)

— “Machinetta” strategy, based on principle of “teamwork”, in which complex tasks
(“roles”) are allocated to best-suited team members in order to optimize team’s
objectives (NP-hard problem)

— approximates analytically using DCOP (distributed constraint optimization problem)
technique

— roles (complex tasks) are represented as “tokens”; these are passed around to agents;
agents accept tokens when they decide that they have the capabilities to complete
tasks associated with the token

31
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applications: argumentation

e theoretical work surveyed in [Rahwan et al., 2003]
e to date, not implemented in multi-robot system
e implemented in mixed-initiative system [Ferguson, 1995]

e decision-making and medical applications [Fox and Das, 2000, Fox et al., 1997]
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