
Semantics and Conversations for an Agent Communication Language �Yannis Labrou and Tim FininComputer Science and Electrical Engineering Department,University of Maryland, Baltimore County, Baltimore, MD 21250, USAAbstractWe address the issues of semantics and con-versations for agent communication languagesand the Knowledge Query Manipulation Lan-guage (KQML) in particular. Based on ideasfrom speech act theory, we present a semanticdescription for KQML that associates \cogni-tive" states of the agent with the use of thelanguage's primitives (performatives). We haveused this approach to describe the semanticsfor the whole set of reserved KQML performa-tives. Building on the semantics, we devise theconversation policies, i.e., a formal descriptionof how KQML performatives may be combinedinto KQML exchanges (conversations), using aDe�nite Clause Grammar. Our research o�ersmethods for a speech act theory-based seman-tic description of a language of communicationacts and for the speci�cation of the protocolsassociated with these acts. Languages of com-munication acts address the issue of communi-cation among software applications at a level ofabstraction that is useful to the emerging soft-ware agents paradigm.1 IntroductionCommunication among software agents [Petrie, 1996;Nwana, 1996] is an essential property of agency[Wooldridge and Jennings, 1995]. Agent communicationlanguages allow agents to e�ectively communicate andexchange knowledge with other agents despite di�erencesin hardware platforms, operating systems, architectures,programming languages and representation and reason-ing systems. We view an agent communication language�This work was supported in part by the Air Force Of-�ce of Scienti�c Research under contract F49620{92{J{0174,and the Advanced Research Projects Agency monitored un-der USAF contracts F30602{93{C{0177 and F30602{93{C{0028 by Rome Laboratory.

as the medium through which the attitudes regardingthe content of the exchange between agents are commu-nicated; it suggests whether the content of the commu-nication is an assertion, a request, a query, etc.Knowledge Query and Manipulation Langua-ge (KQML) is such a language; it consists of primitives(called performatives) that express attitudes regardingthe content of the exchange and allow agents to com-municate such attitudes to other agents and �nd otheragents suitable to process their requests. Our researchprovides semantics for KQML along with a frameworkfor the semantic description of KQML-like languages foragent communication. We also address the issue of con-versations, i.e., of sequences of causally-related messagesin exchanges between agents and present a method forthe speci�cation of conversations (conversation policies).After an introduction to KQML, we describe our se-mantic framework and give the semantics for a small setof KQML performatives. We follow with our method fordescribing the protocols (conversations) associated withthe primitives and present the resulting conversations forour set of performatives. 1 We end by summarizing ourcontributions regarding the semantics and the speci�ca-tion of the conversations.2 KQML for Agent CommunicationKQML is an abstraction, a collection of communica-tion primitives (message types) that express an atti-tude regarding the actual expression being exchanged,along with the assumptions of a simple model for inter-agent communication and an abstract design for KQML-speaking agents. There is no such thing as an implemen-tation of KQML, per se, meaning that KQML is not aninterpreted or compiled language that is o�ered in somehardware platform or an abstract machine. Agents speakKQML in the sense that they use those primitives, thislibrary of communication acts, with their reservedmean-ing. The application programmer is expected to provide1Speci�cations for the full set of KQML performatives andassociated policies are available in [reference omitted].

code that processes each one of the performatives forthe agent's language or knowledge representation frame-work. This is a KQML message:(ask-if :sender A:receiver B:language prolog:ontology bible-genealogy:reply-with id1:content ``spouse(adam,eve)'')In KQML terminology, ask-if is a performative. 2 Thevalue of the :content is an expression in some languageor another KQML message and represents the contentof the communication act. The other parameters (key-words) introduce values that provide a context for theinterpretation of the :content and hold information tofacilitate the processing of the message. In this example,A is querying B (these are symbolic names for agents3),in Prolog (the :language), about the truth status ofspouse(adam,eve). Any response to this KQML messagewill be identi�ed by id1 (the :reply-with). The ontol-ogy 4 bible-genealogy may provide additional informationfor the interpretation of the :content. In an environ-ment of KQML-speaking agents there are agents calledfacilitators (mediators or brokers [Decker et al., 1996])denote similarly intended agents to whom agents adver-tise their services and ask for assistance in �nding otheragents that can provide services for them.Our goal is to provide a semantic description for thelanguage in a way that captures all the intuitions ex-pressed in its existing documentation [ARPA Knowl-edge Sharing Initiative, 1993]. The lack of semanticsfor KQML has been a long-standing problem of KQML.Moreover, although agents engage into extended inter-actions with other agents (conversations), conversationsis an issue that has received little attention with respectto KQML, or other agent communication languages (thefew notable exceptions are [Barbuceanu and Fox, 1995;Kuwabara, 1995; Bradshaw et al., 1996; Parunak, 1996]).Building on the semantic description we explore the issueof specifying KQML conversations in a formal manner.3 A Framework for the SemanticsWe treat KQML performatives as speech acts. We adoptthe descriptive framework for speech acts and particu-larly illocutionary acts suggested by Searle [Searle, 1969;Searle and Vanderveken, 1985]. The semantic approachwe propose uses expressions, that suggest the minimumset of preconditions and postconditions that govern the2The term was �rst coined by Austin [Austin, 1962], tosuggest that some verbs can be uttered so that they performsome action.3We will use the term agents to indiscriminately refer toall kinds of KQML-speaking programs and applications.4An ontology is a repository of semantic and primarilypragmatic knowledge over a certain domain.

use of a performative, along with conditions that sug-gest the �nal state for the successful performance of theperformative; these expressions describe the states of theagents involved in an exchange and use propositional at-titudes like belief, knowledge, desire, and intention (thisintentional description of an agent is only intended asa way of viewing the agent) which have the followingreserved meaning:1. Bel, as in Bel(A,P), which has the meaning that P is(or can be proven) true for A. P is an expression in thenative language of agent A.52. Know, as in Know(A,S), expresses knowledge for S,where S is a state description (the same holds for thefollowing two operators).3. Want, as in Want(A,S), to mean that agent A desiresthe cognitive state (or action) described by S, to occurin the future.4. Int, as in Int(A,S), to mean that A has every intentionof doing S and thus is committed to a course of actiontowards achieving S in the future.We also introduce two instances of actions:1. Proc(A,M) refers to the action of A processing theKQML message M . Every message after being receivedis processed, in the sense that it is a valid KQML mes-sage and the piece of code designated with processingthe performative for the application indeed processes it.Proc(A,M) does not guarantee proper processing of themessage (or conformance of the code with the semanticdescription).2. SendMsg(A,B,M) refers to the action of A sending theKQML message M to B.For an agent A it is Bel(A,P) if and only if P istrue (in the model-theoretic sense) for A; we do notassume any axioms for Bel. Roughly, Know, Wantand Int stand for the psychological states of knowl-edge, desire and intention, respectively. All three takean agent's state description (either a cognitive state oran action) as their arguments. An agent can Know anexpression that refers to the agent's own state or someother agent's state description if it has been communi-cated to it. So, Know(A,Bel(B,"foo(a,b)")) is valid,if Bel(B,"foo(a,b)") has been communicated to A withsome message, but Know(A,"foo(a,b)") is not valid be-cause \foo(A,B)"is not a state description. Researchershave grappled for years with the problem of formallycapturing the notions of desire and intention. Variousformalizations exist but none is considered a de�nitiveone. We do not adopt a particular one neither we o�er aformalization of our own. It is our belief that any of theexisting formalizations would accommodate the modestuse of Want and Int in our framework.Our semantic description, which includes expressionswith the mental attitudes and actions we described, pro-vides the following: (1) a natural language description5The native language of the application may or may nothave modal operators but we do not assume any, here.

of the performative's intuitive meaning; (2) an expres-sion which describes the content of the illocutionary actand serves as a formalization of the natural languagedescription; (3) preconditions that indicate the neces-sary state for an agent in order to send a performative(Pre(A)) and for the receiver to accept it and success-fully process it (Pre(B)); if the preconditions do nothold a error or sorry will be the most likely response;(4) postconditions that describe the states of both in-terlocutors after the successful utterance of a performa-tive (by the sender) and after the receipt and processing(but before a counter utterance) of a message (by thereceiver); the postconditions (Post(A) and Post(B),respectively) hold unless a sorry or an error is sent as aresponse in order to suggest the unsuccessful processingof the message; (5) a completion condition for the per-formative (Completion) that indicates the �nal state,after possibly a conversation has taken place and the in-tention suggested by the performative that started theconversation, has been ful�lled; and (6) any explanatorycomments that might be helpful. the performative.4 Semantics for KQML PerformativesWe present the semantics for �ve KQML performatives(advertise, ask-if, tell, sorry and broker-one) which cansupport some interesting agent conversations and illus-trate our approach. 6 We �rst introduce our notation.For a KQML message performative(A,B,X), A is the:sender, B is the :receiver and X is the :content ofthe performative (KQML message). Occasionally we useM to refer to an instance of a KQML message. Capital-case letters from the beginning of the alphabet (e.g., A,B, etc.) are agents' names and letters towards the endof the alphabet (e.g., X,Y,Z) are propositional contentsof performatives. All underscores () are unnamed, uni-versally quanti�ed variables (they stand for performativeparameters that do not have values in the KQML mes-sage). Capital case letters preceded by a question mark(?), e.g., ?B, are existentially quanti�ed variables.All expressions in our language denote agents' states.Agents' states are either actions that have occurred(Proc and SendMsg) or agents' mental states (Bel,Know, Want or Int). Conjunctions (^) and disjunc-tions (_) of expressions that stand for agents' states areagent's states, also, but we do not allow ^ and _ in thescope of Know, Want and Int. Propositions in theagent's native language can only appear in the scope ofBel and Bel can only take such a proposition as itsargument. Bel, Know, Want, Int and actions canbe used as arguments for Know (actions should thenbe interpreted as actions that have already happened).Want and Int can only use Know or an action as ar-6Semantics for the complete set appear in [Labrou, 1996].

guments. When actions are arguments ofWant or Int,they are actions to take place in the future.A negation of a mental state is taken to mean that themental state does not hold in the sense that it shouldnot be inferred (we will use the symbol not). When :quali�es Bel, e.g., : (Bel(A,X)), it is taken to meanthat the :content expression X is not true for agent A,i.e., it is not provable in A's knowledge base. Obviously,what \not provable" means is going to depend on thedetails of the particular agent system, for which we wantto make no assumptions.advertise(A,B,M)1. A states to B that A can and will process the mes-sage M from B, if it receives one (A commits itselfto such a course of action).2. Int(A,Proc(A,M))whereM is the KQML message performative na-me(B,A,X).3. Pre(A): Int(A,Proc(A,M))Pre(B): NONE4. Post(A):Know(A,Know(B,Int(A,Proc(A,M))))Post(B): Know(B,Int(A,Proc(A,M)))5. Completion: Know(B,Int(A,Proc(A,M)))6. An advertise is a commisive act, in the sense thatit commits its sender to process M , as suggestedby the announcement of the intention to process. IfB is a facilitator then B is interchangeable (in thesemantic description) with the name of any agentthe facilitator knows about.ask-if(A,B,X)1. A wants to know what B believes regarding thetruth status of the content X .2. Want(A,Know(A,S))where S may be any of Bel(B,X), or :(Bel(B,X)).3. Pre(A): Want(A,Know(A,S)) ^ Know(A,Int-(B,Proc(B,M)))where M is ask-if(A,B,X)Pre(B): Int(B,Proc(B,M))4. Post(A): Int(A,Know(A,S))Post(B): Know(B,Want(A,Know(A,S)))5. Completion: Know(A,S0))where S0 is either Bel(B,X) or :(Bel(B,X)), butnot necessarily the same instantiation of S that ap-pears in Post(A), for example.6. Pre(A) and Pre(B) suggest that a proper adver-tisement is needed to establish them (see advertiseand our comments in Section 7).tell(A,B,X)1. A states to B that A believes the content to be true.2. Bel(A,X)

3. Pre(A): Bel(A,X) ^ Know(A,Want(B,Know-(B,S)))Pre(B): Int(B,Know(B,S))where S may be any of Bel(B,X), or :(Bel(B,X)).4. Post(A): Know(A,Know(B,Bel(A,X)))Post(B): Know(B,Bel(A,X))5. Completion: Know(B,Bel(A,X))6. The completion condition holds, unless a sorry orerror suggests B's inability to acknowledge the tellproperly, as is the case with any other performative.sorry(A,B,Id)1. A states to B that although it processed the mes-sage, it has no (possibly further) response to pro-vide to the KQML message M identi�ed by the:reply-with value Id (some message identi�er).2. Proc(A,M)3. Pre(A): Proc(A,M)Pre(B): SendMsg(B,A,M)4. Post(A): Know(A,Know(B,Proc(A,M))) ^not(PostM (A)),where PostM (A) is the Post(A) for message M .Post(B): Know(B,Proc(A,M)) ^ not(PostM (B))5. Completion: Know(B,Proc(A,M))6. The postconditions and completion conditions donot hold, even though A dispatched the performa-tive to the appropriate function, because A couldnot (or did not want) to come up with a responsethat would result to their satis�ability. The notshould be taken to mean that the mental state itquali�es should not be inferred to be true as a re-sult of this particular message. This does not meanthat for example PostM (B) does not hold if it hasalready been established by a previous message; itis up to B to decide (perhaps after using additionalinformation) if and how it wants to alter its internalstate with respect to the sorry.broker-one(A,B,performative(A, ,X))Let D be an agent such that CanProc(D,performati-ve(B,D,X)) 7 and performative be a performative thatentails a request (a directive); for the set of performa-tives presented here, only ask-if falls into this category.B sends performative(B,D,X) to D, receives some re-sponse (depending on the performative) from D, let us7CanProc, as in CanProc(A,M), stands for \A beingable to process message M ." It is always the case that ifadvertise(A,B,M) then CanProc(A,M), but it could verywell be the case that CanProc(A,M) may be inferred inother ways (this is to be provided or inferred by B). Can-Proc is entirely di�erent from Proc; CanProc suggestsability to process and Proc suggest that the agent will pro-cess (or has already processed) a performative, in the sensethat it will (or did) dispatch the message to the appropriatepiece of code for handling.

call it response(D,B,X'), and then B sends to A themessage forward(B,A, ,A,response(,A,X')). 8Semantically this is a three-party situation. We breakdown the semantic description to the three (agent) pairsinvolved in the transaction.A and B For A and B, the semantics are not thoseof a performative(A,B,X), meaning that A is awarethat whatever response, if any, comes from B is merelyan \echo" of the utterance of the broker-ed agent D. So,the semantics is:1. A wants B (a broker) to send the :content of the broker-one to some agent that can process it and eventuallyforward the response of the broker-ed agent back to A.2. Want(A,SendMsg(B,D,M))where M is performative(B,D,X) and D is an agentsuch that CanProc(D,M).3. Pre(A): Want(A,SendMsg(B,D,M))Pre(B): B has to be a facilitator; an agent can be afacilitator if and only if it can process performatives likebroker-one, although it is usually more helpful to ascribefacilitator status to an agent in advance, so that agentscan know which agent to contact for such requests.4. Post(A): Know(A,SendMsg(B,D,M))Post(B): SendMsg(B,D,M))5. Completion: SendMsg(B,A,forward(B,A, ,A,M'))where M' is the message response(,A,X') gener-ated by the broker-ed agent's response to B, i.e., re-sponse(D,B,X').6. To o�er an example, if the :content of the broker-onewas ask-if(A, ,X), A understands that the (possible)response forward(B,A, ,A,tell(,A,X)) does not im-ply that Bel(B,X), since D's response to B is wrappedin a forward and then sent to A. Also, D's name isomitted in the forward, so A does not know D's name.B and D For B and D the semantics are thoseof performative(B,D,X), meaning that as far as Dknows of, the exchange has the meaning and repercus-sions of performative(B,D,X) (and whatever addi-tional responses) being exchanged between B and D.A and D For A and D the semantics are those ofperformative(A,D,X) (let us call it M) but with themajor di�erence that this is an one-sided exchange. So,PreM (D) and PostM (D) are empty because D does notknow that it has this exchange with A. Additionally,A can have no prior knowledge (in PreM (A)) of itsinterlocutor's state. Finally, the applicable PostM (A)and CompletionM lack the name of D. To show howthis translates semantically, we present the semantics ofbroker-one(A,B,ask-if(A, ,X)) for agent A and thebroker-ed agent D.1. A wants to know what some other agent believes regard-ing the truth status of the content X.8The performative forward is not presented here. Itsmeaning is basically the intuitive one and the four parame-ters :from, :to, :sender and :receiver refer respectively tothe originator of the performative in the :content, the �naldestination, the :sender of the forward and the :receiverof the forward.

2. Want(A,Know(A,S))where S may be any of Bel(?D,X), or :(Bel(?D,X)).3. Pre(A): Want(A,Know(A,S))Pre(D): NONE4. Post(A): Int(A,Know(A,S))Post(D): NONE5. Completion: Know(A,S0))where S0 is either Bel(?D,X) or :(Bel(?D,X)), but notnecessarily the same instantiation of S that appears inPost(A), for example.6. In e�ect, D's identity remains unknown to A and Dis unaware that A knows its belief regarding the truthstatus of X.5 Describing ConversationsA conversation is a sequence of KQML messages thatbelong to the same thread of interaction between twoor possibly more agents. We assume some sort of (intu-itive) causal relation between messages that are takento belong in the same conversation and we use the:in-reply-to value as the indicator of such linkage.Conversation policies are rules that describe permissi-ble conversations among KQML-speaking agents. Theconversation policies that we provide do not describeall possible conversations because more complex inter-actions (and thus conversations) are possible betweenKQML-speaking agents. The conversations we presentcan be used as building blocks for more complex inter-actions.We use the De�nite Clause Grammars (DCGs) formal-ism for the speci�cation of the conversation policies forthe KQML performatives. DCGs extend Context FreeGrammars (CFGs) in the following way [Perreira andWarren, 1986]: 1) Non-terminals may be compoundterms (instead of just atoms as in the CFG case), and2) the body of a rule may contain procedural attach-ments, written within \f" and \g" (in addition to ter-minals and non-terminals), that express extra conditionsthat must be satis�ed for the rule to be valid. For ex-ample, a DCG rule might look likenoun(N) �! [W], fRootForm(W,N), is noun(N)gwith the possible meaning that \a phrase identi�ed asthe noun N may consist of the single word W ([W] isa terminal), where N is the root form of W and N is anoun" [Perreira and Warren, 1986].5.1 DCGs & KQML conversation policiesConversation policies describe both the sequences ofKQML performatives and the constraints and depen-dencies on the values of the reserved parameters of theperformatives involved in the conversations. In otherwords, we are not only interested in asserting that anask-if might be followed by a tell (among other per-formatives) but we want to also capture constraintssuch as, the contentask�if being the same with thecontenttell or the reply� withask�if being also the

in� reply� totell. The DCG we provide in the nextsection fully describes the above in a declarative fash-ion.Each KQML message is a terminal in the DCG. Aterminal is a list of the following values: performat-ive name, :sender, :receiver, :in-reply-to, :re-ply-with, :language, :ontology, IO (if IO is set to1 the message is an incoming message and if it isset to O the current message is an outgoing mes-sage), :content, and whenever the :content is a per-formative itself, then the :content is going to be alist itself. Terminals are enclosed in \[" and \]",so a terminal in our DCG will look like: [[ask-if,A,B,id1,id2,prolog,bar,foo(X,Y)]] In the DCG wepresent here, we omit the :language and :ontology val-ues (we take them to remain unchanged throughout thesame conversation).The conversation policies we present are tied to thesemantics in the sense that changes in the semantic de-scription would result to di�erent conversation policies.Our conversation policies technically are not inferredfrom the semantic description, but they de�ne the min-imal set of conversations that are consistent with thesemantics when following these heuristics:� If a performative has preconditions for the sender, thenit cannot start a conversation if these preconditions haveto be established by a communication act (see tell).� If the completion condition(s) for a performative are notnot a subset of the postconditions, then a performativecannot end a conversation since further (communica-tive) action has to take place to establish the completioncondition(s) (see ask-if).� A performative may be preceded by a performative thatcan (partially) establish its preconditions (e.g., a tellmay be preceded by an ask-if; compare Post(A) forask-if and Pre(A) for tell).6 Converation Policies, in detailWe present a complete DCG for the set of performativespresented in Section 4. This is a subset of the full DCGthat describes the whole set of conversation policies (see[Labrou, 1996]) and is intended as a demonstration ofhow our method may be used.ask-if, tellS ! s(CC,P,S,R,IR,Rw,IO,C),fmember(P,[advertise,broker-one])gs(CC,ask-if,S,R,IR,Rw,IO,C) ![[ask-if ,S,R,IR,Rw,IO,C]] j[[ask-if ,S,R,IR,Rw,IO,C]], fOI is abs(1-IO)g,r(CC,ask-if,S,R, ,Rw,OI,C)r(CC,ask-if,R,S, ,IR,IO,C) ![[tell ,S,R,IR,Rw,IO,C]] jproblem(CC,R,S,IR, ,IO)The rules are organized into groups that describe the

sub-dialogues that may start with a performative, or agroup of them and are written so that any sequence ofmessages that is reachable from the start is also a con-versation that will be accepted by the DCG. Note thatthere is no notion of a complete KQML conversation, al-though it might be possible to de�ne such conversationsin some cases. Rules might be called by other rules.As a result, an advertise of an ask-if is a conversation;if a proper ask-if follows the advertise, the sequence ofadvertise and ask-if is a conversation; and �nally, if anappropriate tell follows the ask-if, the resulting sequenceof the three messages will be a conversation that theDCG will accept. The values of the various terminalsand non-terminals de�ne what an appropriate follow-upis, at any point of a KQML exchange. We use the follow-ing variables for the various tokens that appear in theDCG (symbols that start with a capital-case letter arevariables and those that start with small-case letters areconstants): CC stands for the current conversation thatthe DCG handles; P is the performative name; S is the:sender; R is the :receiver; IR is the :in-reply-tovalue; Rw is the :reply-with; IO and OI are the vari-ables that indicates if a message is an incoming or out-going one (they only take the values 0 and 1 and alwayshave complimentary values) ; C is the :content; and []is the empty string.We take the position that all starting points for conver-sations are advertise performatives and the broker-oneperformative (when sent to, or processed by facilitators).Ask-if may follow an advertise and may be responded to(in this KQML subset) with a tell. 9 The :in-reply-tovalue of the response must equal the :reply-with ofthe ask-if for all performatives that act as a response ora follow-up to some other performative. Also, notice thatthe :content of a response is the same as the :contentof the querying performative in the case of the ask-if.sorryproblem(CC,R,S,IR,Rw,IO) ![[sorry ,S,R,IR,Rw,IO,[]]]A problematic or a non-positive response, i.e., a sorry (oran error, not included here) is always a possibility andthose two performatives may follow almost any perfor-mative (except for another sorry or error).advertises(CC,advertise,S,R, ,Rw,IO,) !f OI is abs(1-IO) g,[[advertise,S,R, ,Rw,IO,[P1,R,S,Rw, ,OI,C1]]] ,fmember(P1,[ask-if])g,c adv(CC,P1,S,R,Rw, ,OI,C1)c adv(CC,P,R,S,Rw adv, ,IO,C) !s(CC,P,S,R,Rw adv, ,IO,C) j9A response with a sorry or error (not included in thisset) is always a possibility of course.

problem(CC,S,R,Rw adv, ,IO) j []The procedural attachment restricts the performativesthat might appear in the :content of an advertise. The:content has the form of the expected follow-up to theadvertise. This follow-up is given by the part of the DCGthat starts the sub-dialogue for the embedded performa-tive. Note that it is possible to have a sorry responseto the advertise itself, as well to the follow-ups to theadvertise.broker-ones(CC,broker-one,S,R,IR,Rw,IO,C) !fOI is abs(1-IO)g,[[broker-one,S,R,IR,Rw,IO,[P1,R, R,Rw,Rw1, ,C1]]] ,fmember(P1,[ask-if])g,c brk one(CC,P1,S,R,Rw,Rw1,OI,C1)c brk one(CC,P,R,S,Rw brk,Rw,1,C) ! [] jproblem(CC,S,R,Rw brk, ,1) jr(CC,P,Brk,R, ,Rw,1,C)c brk one(CC,P,R,S,Rw brk,Rw,0,C) ! [] jproblem(CC,S,R,Rw brk,Rw,0) js(CC,P,S,Brk,Rw brk,Rw,0,C),c brk one1(CC,P,S,R,Brk,Rw brk,Rw,0,C)c brk one1(CC,P,S,R,Brk,Rw brk,Rw,IO,C) ! [] jfOI is abs(1-IO), last(CC,[P1,Brk,S,Rw,Rw1,OI,C1]),assert(send MSG([forward,S,R,Rw brk,Rw2,OI,[P1, Brk,R,Rw brk,Rw1,OI,C1]]))g j[[forward,S,R,Rw brk,Rw2,OI,[P1, Brk,R,Rw brk,Rw1,OI,C1]]]The broker-one performative presents an interestingcase because it involves a three-party interaction. Thereceiverbroker�one sends the contentbroker�one (withthe appropriate values) to some other agent and thenpasses the response(s) to it to the senderbroker�one. Thelast part of this exchange can be done automatically witha procedural attachment in the DCG instead of beingtaken care of by the handler function for broker-one. Asthe c brk one1 rule suggests, a sub-dialogue (a new con-versation) with the third agent starts and the response(or follow-up), i.e., the last message in the conversationbeing handled by the DCG with the expected values for:sender and :in-reply-to, is sent to senderbroker�one(this is the meaning of the procedural attachment in thec brk one1 rule, that makes reference to predicates thatare not a part of the DCG).If the local agent sent a broker-one, the message ex-pected is the prescribed response or follow-up to the per-formative in the :content. Technically this message (ormessages) will arrive wrapped in a forward but from theDCG point of view will be stripped from their \forward-ing" packaging. This performative is a prime example ofhow complicated interactions might be composed fromthe simpler building blocks.

7 DiscussionThe issue of semantics for communication acts has re-ceived a fair share of attention. Cohen and Lesvequesuggest a model for rational agents [Cohen and Levesque,1990], which uses a possible-worlds formalism, that canin turn be used as a framework for the semantic descrip-tion of illocutionary acts [Cohen and Levesque, 1995;Smith and Cohen, 1996]. Sadek [Sadek, 1992] has alsotaken on a similar task of de�ning rational agency andde�ning communicative acts on top of it. Finally, Singhproposes a model of agency [Singh, 1993a], which di�ersfrom that of Cohen and uses it as a framework for thesemantic treatment of speech acts [Singh, 1993b].In contrast, we draw directly from a high-levelspeech act account, although the resulting preconditions-/postconditions framework is reminiscent of planning(but it could also be thought as operational semantics,i.e., transitions on agents' states). Also, we provide noformal semantics (in a possible-worlds formalism or somesimilar framework) for the modal operators but we re-strict the scope and use of these operators, so that theycan be subsumed by similar modalities whose semanticscould be provided by an intentional theory of agency.Apart from the complexity of possible-worlds{like for-malisms which can be prohibiting for the intended au-dience of our semantic description that includes appli-cation developers that want to support KQML in theirsoftware agents, we want to avoid a tight coupling witha particular theory of agency. Another common ele-ment of the mentioned approaches is the strictly declara-tive de�nitions of the primitives. Instead, our precondi-tions, postconditions and completion conditions frame-work suggests a more operational approach which wehope will be useful to implementors that have to providethe code that processes the communication primitives.By attempting a semantics for communication actswithout a theory of agency, i.e., formal semantics for thepropositional attitudes (operators), we certainly give upinteresting inferencing. For example, if an agent sendstell(A,B,X) and later tell(A,B,X! Y), B will not beable to infer thatBel(A,Y) (since we do not even assumea universal weak S4 model for Bel) based on the KQMLsemantics alone. Nothing is lost though, because the ad-ditional information of the agent theory that holds forthe agent can be supplied as part of the KQML exchange(e.g., in the :ontology value of a KQML message) andsubsequently taken into consideration for further infer-encing. In the end, we trade a formal semantics for thepropositional attitudes, which inevitably de�ne a modelof agency that is unlikely to be universal for all agents,for a simpler formalism and agent theory independence.Objections may be raised regarding some of ourchoices regarding the meaning we chose to attribute tosome of the performatives. Our semantics for tell, for

example, suggest that an agent can not o�er unsolicitedinformation to some other agent. This can be easilyamended by introducing another performative, let uscall it proactive-tell which has the same semantic de-scription as tell with the following di�erence: Pre(A)is Bel(A,X), and Pre(B) is empty. Similarly, an agentA can send an ask-if to agent B if and only if A knowsthat B is going to process such a request. Implicit in thischoice, is our preference for a model where agents adver-tise their services so that other agents (with the help ofmediators or facilitators) can �nd agents that can pro-cess requests for them. A \relaxed" version of ask-if canbe introduced to allow for direct querying. The seman-tic description of this proactive-ask-if di�ers from that ofask-if as follows: Pre(A) isWant(A,Know(A,S)), andPre(B) is empty. Following KQML's tradition of anopen standard, the KQML users' community should de-cide the performative names to be associated with what-ever semantic description. Additionally, these two "new"performative could be starting points for conversationsin our conversation policies.Our description and implementation of the conversa-tion policies using a DCG allows as to provide a descrip-tion that would not be possible had we chosen a CFG ora Finite State Machine for the task. Another formalismthat would probably provide us with the same exibil-ity is that of Augmented Transition Networks10 (ATNs),but DCGs have the advantage that they can be expresseddirectly in a general purpose programming language likeProlog (in fact our DCG is a Prolog program). Theconversation policies do not prescribe the only possiblebehavior for an agent but they rather de�ne one whichis consistent with the semantics. Such a speci�cation isin no way a prescriptive one and thus does not constrainelaborate agents but it could be useful for simpler ones.8 ConclusionsWe have presented excerpts of a complete semantic de-scription for the primitives in the agent communicationlanguage KQML. This speci�cation uses a frameworkfor the semantic description of KQML-like languages 11for the linguistic communication among software agentsalong with a method for specifying the conversationsthat builds on our semantic description. We have usedour approach to provide the semantics and conversationpolicies for the full set of KQML primitives and we havepresented the framework and the semantic descriptionalong with the method and the conversation policies'10Perreira and Warren claim that DCGs are at least aspowerful of a formalism as ATNs ([Bates, 1979]), with DCGshaving some considerable advantages over ATNs ([Perreiraand Warren, 1986]).11That is, languages of attitude-expressing communicationprimitives, modeled after speech acts.

speci�cation for a handful of performatives.The conversation policies present us with some attrac-tive possibilities. They can be used to devise a softwarecomponent that monitors an agent's incoming and out-going messages and ensures that it only engages in validKQML conversations of well-formed KQML messages.Such a component can keep track of an agent's multi-ple interactions (conversations) with other agents ando�er ways to recover from unforeseen situations. Alter-natively, one may view an agent as a collection of conver-sations that \unfold" concurrently as the agent interactswith other agents. Finally, the conversation policies canbe used as building blocks for more complex interactions.In the end, we should keep in mind that agents do notuse the primitives of a communication language stati-cally, but in order to carry, often complex, interactionswhich the conversation policies can help describe.References[ARPA Knowledge Sharing Initiative, 1993]ARPA Knowledge Sharing Initiative. Speci�cation ofthe KQML agent-communication language. ARPAKnowledge Sharing Initiative, External InterfacesWorking Group working paper., July 1993.[Austin, 1962] J.L. Austin. How to do things with words.Harvard University Press, Cambridge, MA, 1962.[Barbuceanu and Fox, 1995] M. Barbuceanu and M. S.Fox. COOL: a language for describing coordinationin multi-agent systems. In Proceedings of the 1st In-ternational Conference on Multi-agent systems (IC-MAS'95), pages 17{24. AAAI/MIT Press, 1995.[Bates, 1979] Madeleine Bates. The theory and prac-tice of augmented transition network grammars. InLeonard Bolc, editor, Natural Language Communica-tion with Computers, Lecture Notes in Computer Sci-ence, pages 191{260. Morgan Kaufmann, 1979.[Bradshaw et al., 1996] Je�rey M. Bradshaw, StuartDut�eld, Pete Benoit, and John D. Woolley. Kaos: To-ward an industrial-strength open agent architecture.In Je�rey M. Bradshaw, editor, Software Agents (inpreparation). AAAI/MIT Press, 1996.[Cohen and Levesque, 1990] Philip R. Cohen and Hec-tor J. Levesque. Intention is choice with commitment.Arti�cial Intelligence, 42:213{261, 1990.[Cohen and Levesque, 1995] Philip R. Cohen and H.J.Levesque. Communicative actions for arti�cial agents.In Proceedings of the 1st International Conference onMulti-Agent Systems (ICMAS'95). AAAI Press, June1995.[Decker et al., 1996] Keith Decker, Mike Williamson,and Katia Sycara. Matchmaking and brokering. In

Proceedings of the 2nd International Conference onMulti-Agent Systems (ICMAS'96), December 1996.[Kuwabara, 1995] K. Kuwabara. AgenTalk: coordina-tion protocol description for multi-agent systems. InProceedings of the 1st International Conference onMulti-agent systems (ICMAS'95). AAAI/MIT Press,1995.[Labrou, 1996] Yannis Labrou. Semantics for an AgentCommunication Language. PhD thesis, University ofMaryland, Baltimore County, August 1996.[Nwana, 1996] Hyacinth S. Nwana. Software agents: anoverview. Knowledge Engineering Review, 11(3):1{40,September 1996.[Parunak, 1996] H. Van Dyke Parunak. Visualizingagent conversations: Using enhanced dooley graphsfor agent design and analysis. In Proc. of the 2nd In-ternational Conference on Multi-Agent Systems (IC-MAS'96), 1996.[Perreira and Warren, 1986] F. Perreira and D. Warren.De�nite clause grammars for language analysis. InBarbara J. Grosz, Karen Sparck Jones, and Bon-nie Lynn Webber, editors, Readings in Natural Lan-guage Processing, pages 101{124. Morgan KaufmannPublishers, 1986.[Petrie, 1996] Charles Petrie. Agent-based engineering,the web, and intelligence. IEEE Expert, December1996.[Sadek, 1992] M.D. Sadek. A study in the logic of in-tention. In Proceedings of the 3rd Conference onPrinciples of Knowledge Representation and Reason-ing (KR'92), pages 462{473, Cambridge, MA, 1992.[Searle and Vanderveken, 1985] J. Searle and D. Van-derveken. Foundations of illocutionary logic. Cam-bridge University Press, Cambridge, UK, 1985.[Searle, 1969] John R. Searle. Speech Acts. CambridgeUniversity Press, Cambridge, UK, 1969.[Singh, 1993a] M.P. Singh. A logic of intentions and be-liefs. Journal of Philosophical Logic, 22:513{544, 1993.[Singh, 1993b] M.P. Singh. A semantics for speech acts.Annals of Mathematics and Arti�cial Intelligence, 8(I-II):47{71, 1993.[Smith and Cohen, 1996] Ira A. Smith and Philip R. Co-hen. Toward a semantics for an agent communica-tions language based on speech-acts. In Proceedingsof the 13th National Conference on Arti�cial Intelli-gence. AAAI/MIT Press, August 1996.[Wooldridge and Jennings, 1995] M. Wooldridge andN.R. Jennings. Intelligent agents: Theory and prac-tice. Knowledge Engineering Review, 10(2), 1995.

