
Collaborative Interface AgentsYezdi LashkariMIT Media Laboratory,Cambridge, MA 02139yezdi@media.mit.edu Max MetralMIT Media Laboratory,Cambridge, MA 02139memetral@media.mit.edu Pattie MaesMIT Media Laboratory,Cambridge, MA 02139pattie@media.mit.eduAbstractInterface agents are semi-intelligent systemswhich assist users with daily computer-basedtasks. Recently, various researchers have pro-posed a learning approach towards building suchagents and some working prototypes have beendemonstrated. Such agents learn by `watchingover the shoulder' of the user and detecting pat-terns and regularities in the user's behavior. De-spite the successes booked, a major problem withthe learning approach is that the agent has tolearn from scratch and thus takes some time be-coming useful. Secondly, the agent's competenceis necessarily limited to actions it has seen theuser perform. Collaboration between agents as-sisting di�erent users can alleviate both of theseproblems. We present a framework for multi-agent collaboration and discuss results of a work-ing prototype, based on learning agents for elec-tronic mail. IntroductionLearning interface agents are computer programs thatemploymachine learning techniques in order to provideassistance to a user dealing with a particular computerapplication. Although they are successful in being ableto learn their user's behavior and assist them, a majordrawback of these systems is the fact that they requirea su�cient amount of time before they can be of anyuse. A related problem is the fact that their compe-tence is necessarily restricted to situations similar tothose they have encountered in the past. We presenta collaborative framework to help alleviate these prob-lems. When faced with an unfamiliar situation, anagent consults its peers who may have the necessaryexperience to help it.Previous interface agents have employed either end-user programming and/or knowledge engineering forknowledge acquisition. For example, (Lai, Malone, &Yu 1988) have \semi-autonomous agents" that consistof a collection of user-programmed rules for processinginformation related to a particular task. The problemswith this approach are that the user needs to recog-nize the opportunity for employing an agent, take the

initiative in programming the rules, endow this agentwith explicit knowledge (speci�ed in an abstract lan-guage), and maintain the rules over time (as habitschange etc). The knowledge engineered approach onthe other hand, requires a knowledge engineer to out-�t an interface with large amounts of knowledge aboutthe application and the domain and how it may con-tribute to the user's goals. Such systems require a largeamount of work from the knowledge engineer. Further-more, the knowledge of the agent is �xed and cannot becustomized to the habits of individual users. In highlypersonalized domains such as electronic mail and news,the knowledge engineer cannot possibly anticipate howto best aid each user in each of their goals.To address the problems of the rule-based andknowledge-engineered approaches, machine learningtechniques have been employed by (Kozierok & Maes1993; Maes & Kozierok 1993; Hermens & Schlimmer1993; Dent et al. 1992) and others. In the CalendarAgent (Kozierok & Maes 1993), memory-based reason-ing is combined with rules to model each user's meetingscheduling habits. Results described in (Kozierok &Maes 1993) show that the learning approach achieves alevel of personalization impossible with knowledge en-gineering, and without the user intervention requiredby rule-based systems. It is also interesting to notethat the addition of rules provides the 
exibility to ex-plicitly teach the agent, and shows that the rule-basedand learning approaches can successfully coexist.While the learning approach enjoys several advan-tages over the others, it has its own set of de�ciencies.Most learning agents have a slow `learning curve' ; thatis, they require a su�cient number of examples be-fore they can make accurate predictions. During thisperiod, the user must operate without the assistanceof the interface agent. Even after learning generaluser behavior, when completely new situations arisethe agent may have trouble dealing with them. Theagents of di�erent users thus have to go through simi-lar experiences before they can achieve a minimal levelof competence, although there may exist other agentsthat already possess the necessary experience and con-�dence.



We propose a collaborative solution to these prob-lems. Experienced agents can help a new agent comeup to speed quickly as well as help agents in unfamiliarsituations. The framework for collaboration presentedhere allows agents of di�erent users, possibly employ-ing di�erent strategies (rule-based, MBR, CBR, etc.)to cooperate to best aid their individual users. Agentsthus have access to a much larger body of knowledgethan that possessed by any individual agent. Over timeagents learn to trust the suggestions of some of theirpeers more than others for various classes of situations.Thus each agent also learns which of its peers is a re-liable `expert' vis-a-vis its user for di�erent types ofsituations. A Single User's AgentThis paper describes experiments conducted with im-plemented interface agents for the electronic maildomain for a commercial email application, Eu-dora (Dorner 1992). This section describes an indi-vidual email agent.Each user's interface agent learns by continuously\looking over the shoulder" of the user as the user isperforming actions. The interface agent monitors theactions of the user over long periods of time, �nds re-current patterns and o�ers to automate them. Forexample, if an agent notices that a user almost al-ways stores messages sent to the mailing-list \genetic-algorithms" in the folder AI Mailing Lists, then it cano�er to automate this action next time a message sentto that mailing list is encountered. The agent can alsoautomate reading, printing, replying, and forwardingas well as assign priority to messages.We have chosen Memory Based Reasoning (Stan-�ll & Waltz 1986) as the algorithm which attempts tocapture user patterns. Our implementation of MBR isbased upon the concepts of situations and actions. Inthe electronic mail domain, we choose mail messagesalong with some context information to represent sit-uations and the user's handling of the messages as ac-tions. At any particular point in time, the user may bepresented with a number of messages. When the usertakes an action, it is paired with the corresponding sit-uation and the situation-action pair is recorded in theagent's memory. For example, if the user reads a mes-sage M, the pair < M0 , read-action> is memorized,where M0 contains details about the message M andrelevant context information (for example thatM wasread nth out of a total of k unread messages). Whennew situations occur, they are compared to the situa-tions previously encountered. After gathering the clos-est matching situations in memory, the agent can cal-culate a prediction for an action in the new situation.In addition, the agent can calculate a con�dence in itsprediction by considering such factors as the numberof situations in its memory and the proximity of theculled situations to the new situation. For a more de-tailed description, see (Kozierok & Maes 1993).

A situation is speci�ed in terms of a set of �elds.MBR measures situation proximity by applying aweighted sum of the distance between the correspond-ing �elds of two situations. In the e-mail domain, ap-propriate �elds would be the originator of the message,the subject, etc. The values of �elds may be of anytype. In previous systems, these �elds were mainlystrings or other static values. In our implementation,�eld values can also be objects. These objects can inturn have �elds, which may be used in predicting ac-tions. For example, the originator of a message is aPerson object, which contains �elds such as that per-son's position in an organization and their relation tothe user. Object-based MBR is much less brittle thantraditional MBR systems and can also use extra knowl-edge present in the objects if it �nds it to be useful. Forexample, let's say that Mary always reads all messagesfrom her boss Kay. If Mary were to suddenly receive amessage from Kay's boss (therefore also Mary's boss),the system will correctly suggest that Mary read themessage, since it uses the knowledge that Mary readseverything from her boss (and therefore probably herboss's boss too) although it has never previously re-ceived a message from Kay's boss. 1 Thus object-basedMBR allows the same situation to be viewed di�erentlydepending on what information is available. In con-trast, a string-based MBR system does not possess thesame 
exibility since we cannot extract more featuresfrom the string.After predicting an action for a given situation, theagent must decide how to use that prediction. For eachpossible action, the user can set two con�dence thresh-olds: the tell-me threshold and the do-it threshold.If the con�dence in a prediction is above the tell-methreshold, the email agent displays the suggestion inthe message summary line. If the con�dence is abovethe do-it threshold, the agent autonomously takes theaction.The agent's con�dence in its predictions grows withexperience, which gives the user time to learn to trustthe agent. During this period, it is especially useful togive the user the opportunity to see exactly what theagent is doing. This feedback is accomplished in threeways: an activity monitor, an explanation facility, andan interface to browse and edit the agent's memory.The activity monitor presents a small caricature to theuser at all times. The caricature depicts states such asalert, thinking, and working, similar to (Kozierok &Maes 1993). An explanation facility provides Englishdescriptions of why the agent suggested an action.An agent starts out with no experience. As messagesarrive and its user takes action, its memory grows.Only after a su�cient number of situation-action pairshave been generated, is the agent able to start predict-ing patterns of behavior con�dently and accurately.1Information about Kay and her boss are retrieved froma knowledge base of the kind maintained by most corpora-tions or university academic departments.



However, when it encounters a new situation that isunlike anything it has in its memory, it is still unsureof what to do. This is because the machine learningalgorithm used requires the training examples to covermost of the example space to work e�ectively.A Framework For CollaborationWe propose a collaborative solution to the problemsabove. While a particular agent may not have anyprior knowledge, there may exist a number of agentsbelonging to other users who do. Instead of each agentre-learning what other agents have already learnedthrough experience, agents can simply ask for help insuch cases. This gives each agent access to a potentiallyvast body of experience that already exists. Over timeeach agent builds up a trust relationship with each ofits peers analogous to the way we consult di�erent ex-perts for help in particular domains and learn to trustor disregard the opinions of particular individuals.Collaboration and communication between variousagents can take many di�erent forms. This paper isonly concerned with those forms that aid an agent inmaking better predictions in the context of new situa-tions. There are two general classes of such collabora-tion.Desperation based communication is invoked whena particular agent has insu�cient experience to makea con�dent prediction. For example, let us supposethat a particular agent A1 has just been activated withno prior knowledge, and its user receives a set of newmail messages. As A1 doesn't have any past experi-ence to make predictions, it turns in desperation toother agents and asks them how their user would han-dle similar situations.Exploratory communication, on the other hand, isinitiated by agents in bids to �nd the best set of peeragents to ask for help in certain classes of situations.We envisage future computing environments to havemultitudes of agents. As an agent has limited resourcesand can only have dealings with a small number of itspeers at a given time, the issue of which ones to trust,and in what circumstances, becomes quite important.Exploratory communication is undertaken by agentsto discover new (as yet untried) agents who are betterpredictors of their users' behaviors than the current setof peers they have previously tested.Both forms of communication may occur at two or-thogonal levels. At the situation level, desperationcommunication refers to an agent asking its peers forhelp in dealing with a new situation, while exploratorycommunication refers to an agent asking previouslyuntested peers for how they would deal with old sit-uations for which it knows the correct action, to de-termine whether these new agents are good predictorsof its user's behavior. At the agent level, desperationcommunication refers to an agent asking trusted peersto recommend an agent that its peers trust, while ex-ploratory communication refers to agents asking peers

for their evaluation of a particular agent perhaps tosee how well these peers' modelling of a particularagent corresponds with their own. Hence agents arenot locked into having to turn for help to only a �xedset of agents, but can pick and choose the set of peersthey �nd to be most reliable.For agents to communicate and collaborate theymust speak a common language as well as follow acommon protocol. We assume the existence of a de-fault ontology for situations in a given domain (suchas electronic news, e-mail, meeting scheduling, etc).Our protocol does not preclude the existence of multi-ple ontologies for the same domain. This allows agentcreators the freedom to decide which types of ontolo-gies their agents will understand. As the primary taskof an agent is to assist its particular user, the protocolfor collaboration is designed to be 
exible, e�cient andnon-binding. We brie
y present the protocol below.� Registration: Agents wishing to help others regis-ter themselves with a \Bulletin Board Agent" whoseexistence and location is known to all agents. Whileregistering, agents provide information regardinghow they can be contacted, what standard domainsthey can provide assistance in, what ontologies theyunderstand and some optional information regard-ing their user. Every agent registering with a bul-letin board agent is given a unique identi�er by thebulletin board.� Locating peers: Agents wishing to locate suitablepeers may query bulletin board agents. An agentquerying a bulletin board agent need not itself reg-ister with that bulletin board. Queries to a bulletinboard agent can take many di�erent forms depend-ing on the type of information required. This allowsagents to locate suitable peers in the most conve-nient way. For example, an agent's user may explic-itly instruct it to ask a speci�c user's agent for helpin dealing with certain types of situations.� Collaboration: Collaborative communication be-tween agents occurs in the form of request and replymessages. An agent is not required to reply to anymessage it receives. This leaves each agent the free-dom to decide when and whom to help. Any requestalways contains the agent's identi�er, the agent'scontact information (for replies), the ontology usedin the request, and a request identi�er (reqid) gener-ated by the agent issuing the request. The reqid isnecessary since an agent may send out multiple re-quests simultaneously whose replies may arrive outof order.Analogously every reply always contains the replyingagent's identi�er and the reqid used in the request.The types of requests and their associated replies arepresented below.{ Situation level collaboration: When a sit-uation occurs for which an agent does not have



a good prediction, it sends o� a Request-for-Prediction message to its peers. A prediction re-quest contains all the features of the situationwhich the agent issuing the request wishes to di-vulge. This allows the requesting agent the free-dom to withhold sensitive or private information.An agent receiving a prediction request maychoose to ignore it for any of a variety of reasons.It may not have a good prediction for the speci�csituation, it may be too busy to respond, the agentissuing the request may not have been very help-ful in the past, or the agent may not be importantenough. If however, an agent decides to respondto a prediction request, it sends back a responsecontaining its prediction and its con�dence in thisprediction (a normalized value).Note that the prediction request is used by agentsfor both desperation and exploratory communi-cation. An agent receiving a prediction requestdoes not know whether the request originated viaexploratory or desperation based behavior on thepart of the agent issuing that request. The dis-tinction is made by the agent issuing the request.Replies to requests sent in desperation are used topredict an action for a particular situation, whilereplies to requests sent in exploratory mode arecompared with the actions that the user actuallytook in those situations, and are used to modelhow closely a peer's suggestions correspond withits user's actions.{ Agent level collaboration: An agent may sendits peers a Request-for-Evaluation request. An eval-uation request is sent when an agent wants toknow what some of its peers think about a cer-tain agent in terms of being able to model theirusers in particular classes of situations. An eval-uation request contains the identi�er of the agentto be evaluated (designated as the target agent)and the particular class of situations for which theevaluation is needed.In any domain and ontology there exist di�erentclasses of situations. Certain agents may modela particular user's behavior in a particular classof situations very well and fail miserably in otherclasses. Note that we expect the domain ontolo-gies to de�ne these classes. For example an emailagent may discover that peer agent A1 is a verygood predictor of its user's actions for messagessent to a mailing list, while being quite useless inpredicting what its user does with any other typeof message. On the other hand peers A2 and A3are excellent predictors of its user's behavior withregards to email forwarded by her groupmates.This enables agents to locate and consult di�erent`expert' peers for di�erent classes of situations.An agent that chooses to respond to an evalua-tion request sends back a normalized value whichre
ects its trust in the target agent's ability to

model its user's behavior for that particular classof situations.An agent may also ask trusted peer agents to rec-ommend a peer who has been found to be useful bythe trusted peer in predicting its user's behaviorfor a particular class of situation. A Request-for-Recommendation contains the situation class forwhich the agent would like its trusted peer to rec-ommend a good agent. Replies to recommenda-tion requests contain the identi�er and contact in-formation of the agent being recommended.Agents model peers' abilities to predict their user'sactions in di�erent classes of situations by a trust value.For each class of situations an agent has a list of peerswith associated trust values. Trust values vary between0 and 1.The trust values re
ect the degree to which an agentis willing to trust a peer's prediction for a particularsituation class. A trust value represents a probabil-ity that a peer's prediction will correspond with itsuser's action based on a prior history of predictionsfrom the peer. Agents may start out by picking a set ofpeers at random or by following their user's suggestionas to which peer agents to try �rst. Each previouslyuntested peer agent gets has its trust level set to aninitial value. As a peer responds to a prediction re-quest with a prediction p, and an agent's user takes aparticular action a, the agent updates the trust valueof its peer in the appropriate situation class as follows:trust = clamp(0; 1; trust+ �p;a � (
 � trust � conf))where�p;a = � +1 if prediction p = user action a�1 if prediction p 6= user action aand trust represents the trust level of a peer, confrepresents the con�dence the peer has in this par-ticular prediction, 
 is the trust learning rate, andclamp(0; 1; c) ensures that the value of c always liesin (0; 1]. The rationale behind the modelling above isas follows. An agent's trust in a peer rises when thepeer makes a correct prediction and falls for incorrectpredictions. The amount it rises and falls by dependson how con�dent the peer was in its prediction. Thatis, a peer who makes an incorrect prediction with ahigh con�dence value should be penalized more heav-ily than one that makes an incorrect prediction butwith a lower con�dence value.When an agent sends out a prediction request tomore than one peer it is likely to receive many replies,each with a potentially di�erent prediction and con�-dence value. In addition, the agent has a trust valueassociated with each peer. This gives rise to manypossible strategies which an agent can use to choose aprediction and a con�dence value for this prediction.We believe that both trust and peer con�dence shouldplay a role in determining which prediction gets se-lected and with what con�dence. Each predicted ac-tion is assigned a trust-con�dence sum value which is



the trust weighted sum of the con�dence values of allthe peers predicting this action. The action with thehighest trust-con�dence sum is chosen. The con�denceassociated with the action chosen is currently that ofthe most con�dent peer suggesting this action. We areexploring more sophisticated trust-con�dence combi-nation strategies using decision theoretic and Bayesianstrategies. Experimental ResultsThe concepts above have been implemented for a com-mercial electronic mail handler (Eudora) for the Ap-ple Macintosh. The agent, implemented in MacintoshCommon Lisp, communicates with the mail applica-tion using the AppleEvent protocol. The MBR Engineis domain independent, and can be easily adapted tocalendar applications or news readers. Furthermore,all of these applications can share �elds and actions. Asmore applications implement an AppleEvent interface,the agent should be able to aid the user with these ap-plications as well. Currently, several users are activelymaking use of the agent on their actual mail. Whilethe computations are intensive, we have achieved sat-isfactory performance on most high end Macintoshes.The performance of MBR in interface agents hasbeen documented in (Kozierok & Maes 1993). Wewish to show that multi-agent collaboration strictlyimproves upon results obtained from single agentsystems. Namely, multi-agent collaboration shouldsteepen the learning curve and improve the handlingof entirely novel messages.To illustrate this, we set up the following scenariousing the actual e-mail of two graduate students overa three day period (approximately 100 messages peruser).Calvin and Hobbes are two graduate students in theIntelligent Agents group.1. Hobbes : Hobbes has been around for some timeand hence his agent is quite experienced. Hobbes'agent has noted the following trends in its user's be-havior. All messages to `bpm', a music mailing listare re�led to a folder called bpm for later reading.Messages directly addressed to Hobbes are read byhim and then deleted, as are messages to other mail-ing lists.2. Calvin : Calvin is a new graduate student in thegroup. Calvin's agent starts out with absolutely noexperience. Calvin also re�les all messages from the`bpm' list for later perusal. He deletes subscriptionrequests sent to the list. Calvin reads messages di-rectly addressed to him, and then re�les them toappropriate folders. The rest of his mail, such asmessages to other lists, he reads and deletes.We plotted the con�dence of Calvin's agent's sug-gestions as Calvin takes actions on about 100 actualmail messages. Figure 1 shows the results obtained.The x-axis indicates the growing experience of Calvin's

Number of Examples

0 10 20 30 40 50 60 70 80 90 100 110

C
on

fid
en

ce
 in

 P
re

di
ct

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

Correct IncorrectFigure 1: Performance without Collaborationagent as Calvin takes successive actions on the mailmessages and the number of situation-action pairs inthe memory increases. The thick rising trend line in-dicates how Calvin's agent's performance (in terms ofcon�dence in predictions) rises slowly with experience.The numerous pockets show new user behavior beingmodeled. The agent makes several mistakes very early,which is to be expected, since the situations it has inits memory early on do not e�ectively capture all ofCalvin's behavior patterns. Towards the end, we seeseveral more mistakes, which re
ect a new pattern oc-curing. With the tell-me threshold for all actions setat 0.1, the graph shows that it will take approximately40 examples for the agent to gain enough con�denceto consistently have suggestions for the user.
Number of Examples

0 10 20 30 40 50 60 70 80 90 100 110

C
on

fid
en

ce
 in

 P
re

di
ct

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

Correct IncorrectFigure 2: Performance with CollaborationFigure 2 shows the level of con�dence of Calvin'sagent in its suggestions with multi-agent collabora-



tion. 2 It may be noted that the con�dence levelsof all correct suggestions are always greater than thecon�dence levels generated by Calvin's agent aloneat any point. The thick horizontal trend line indi-cates that multi-agent collaboration enables an inexpe-rienced agent to make accurate predictions with highcon�dence as soon as it is activated as well as �ll ingaps in even an experienced agent's knowledge. Notethat trust modelling of Hobbes' agent is taking placeinside Calvin's agent with each action Calvin takes onhis mail. Space restrictions preclude the presentationof results regarding trust modelling of multiple peersin this paper. Related WorkVarious types of learning interface agents have been im-plemented (Kozierok & Maes 1993; Maes & Kozierok1993; Hermens & Schlimmer 1993; Dent et al. 1992).All of them are essentially designed to act in a stand-alone fashion or engage in restricted task speci�c com-munication with identical peers. Our agents not onlycome up to speed much faster, but also discover whichof a large set of heterogeneous peers are useful consul-tants to know in particular domains.Multi-Agent Systems research has concentrated onnegotiation and cooperation strategies that are usedby autonomous agents who must compete for scarceresources. Various formal protocols and frameworkshave been proposed to model agent's intentions, do-mains and negotiation strategies (Zlotkin & Rosen-schein 1993; Rosenschein & Genesereth 1985) based onvarious game-theoretic, logical, economic and speech-act models. While the analytic frameworks above areimportant, most are based on restrictive assumptionsabout the domain or the agents' capabilities and as-sume that the reason agents cooperate is because theyneed access to a shared resource or have multiple over-lapping goals.The Ontolingua tools (Gruber 1993) and the workon the KQML Agent-Communication Language (Fininet al. 1993) provide a way for agents using di�erent on-tologies to communicate e�ectively with each other andmay be used to implement our collaborative architec-ture. Our research represents an actually implementedsystem in a real domain that shows the bene�ts of col-laboration amongst agents.ConclusionsWe have implemented a learning interface agent fora commercial application in a real world domain, andhave tested it with real world data. Results have shownthat multi-agent collaboration steepens the agent'slearning curve, and helps in new, unseen situations.Trust modeling allows each agent to build a model of2Hobbes takes no actions on his mail for the durationof this experiment, hence his agent's con�dence remainsunchanged.

each agent's area of expertise, and consult only thoseagents which will be useful for each area.AcknowledgmentsThis research was sponsored by grants from AppleComputer Inc. and the National Science Foundationunder grant number IRI-92056688.ReferencesDent, L.; Boticario, J.; McDermott, J.; Mitchell, T.;and Zabowski, D. 1992. A personal learning appren-tice. In Proceedings of the Tenth National Conferenceon Arti�cial Intelligence, 96{103. San Jose, Califor-nia: AAAI Press.Dorner, S. 1992. Eudora Reference Manual. Qual-comm Inc.Finin, T.; Weber, J.; Wiederhold, G.; Genesereth,M.; Fritzson, R.; McKay, D.; McGuire, J.; Pelavin,R.; Shapiro, S.; and Beck, C. 1993. Speci�cation ofthe KQML agent-communication language. Techni-cal Report EIT TR 92-04 (Revised June 15, 1993),Enterprise Integration Technologies, Palo Alto, CA.Gruber, T. 1993. A translation approach toportable ontology speci�cation. Knowledge Acquisi-tion 5(2):199{220.Hermens, L., and Schlimmer, J. 1993. A machinelearning apprentice for the completion of repetitiveforms. In Proceedings of the Ninth IEEE Conferenceon Arti�cial Intelligence for Applications, 164{170.Orlando, Florida: IEEE Press.Kozierok, R., and Maes, P. 1993. A learning inter-face agent for scheduling meetings. In Proceedings ofthe ACM SIGCHI International Workshop on Intelli-gent User Interfaces, 81{88. Orlando, Florida: ACMPress.Lai, K.; Malone, T.; and Yu, K. 1988. Object lens: Aspreadsheet for cooperative work. ACM Transactionson O�ce-Information Systems 5(4):297{326.Maes, P., and Kozierok, R. 1993. Learning inter-face agents. In Proceedings of the Eleventh NationalConference on Arti�cial Intelligence, 459{465. Wash-ington D.C.: AAAI Press.Rosenschein, J., and Genesereth, M. 1985. Dealsamong rational agents. In Proceedings of the NinthInternational Joint Conference on Arti�cial Intelli-gence, 91{99. Los Angeles, CA: Morgan Kaufmann.Stan�ll, C., and Waltz, D. 1986. Toward memory-based reasoning. Communications of the ACM29(12):1213{1228.Zlotkin, G., and Rosenschein, J. 1993. A domaintheory for task oriented negotiation. In Proceedingsof the Thirteenth International Joint Conference onArti�cial Intelligence, 416{422. Chambery, France:Morgan Kaufmann.


