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Abstract

One category of researchers in artificial life is concerned with modeling
and building so-called adaptive autonomous agents. Autonomous agents
are systems that inhabit a dynamic, unpredictable environment in which
they try to satisfy a set of time-dependent goals or motivations. Agents
are said to be adaptive if they improve their competence at dealing with
these goals based on experience. Autonomous agents constitute a new
approach to the study of artificial intelligence (AI) which is highly inspired
by biology, in particular ethology, the study of animal behavior. Research
in autonomous agents has brought about a new wave of excitement into the
field of AI. This paper reflects on the state of the art of this new approach.
It attempts to extract its main ideas, evaluates what contributions have
been made so far and identifies its current limitations and open problems.

1 Introduction

Since 1985, a new wave has emerged in the study of artificial intelligence (AT).
At the same time at which the popular, general belief is that AI has been a
“failure”, many insiders believe that something exciting is happening, that new
life is being brought to the field. The new wave has been termed “autonomous
agent research” or “behavior-based AI” as opposed to main-stream “knowledge-
based AI”, or also “bottom-up AI” versus “top-down AI”. Finally, the term
“animat approach” (shorthand for “artificial animal”), which was coined by
Wilson [69], is also frequently used.

Several people have given definitions and written overviews of research in Au-
tonomous Agents, among others Brooks [11], Wilson [70] and Meyer [46]. There
are several reasons for giving it yet another try. First of all many researchers
are still skeptical about the approach. Some claim that it isn’t very different
from what they have been doing all along. Others are still not convinced that
the approach is founded and scientific.



A second reason is that this account is different from the papers listed above.
Brooks, being one of the main originators of this new approach, presents a pic-
ture which is restricted to robotic forms of intelligence [11]. This paper presents
amore general perspective. It argues that the autonomous agent approach is ap-
propriate for the class of problems that require a system to autonomously fulfill
several goals in a dynamic, unpredictable environment. This includes applica-
tions such as virtual actors in interactive training and entertainment systems
[3] [39], interface agents [40] [53], process scheduling [42], and so on. Wilson’s
account [70] focuses on a scientific methodology for research in autonomous
agents, while Meyer [46] aims to give an overview of the research performed so
far.

Finally, a third reason is that, since the approach has been around for a
number of years now, it is time to perform a critical evaluation. This paper
discusses the basic problems of research in adaptive autonomous agents. It
also presents an overview and evaluation of the state of the art of the field. In
particular it identifies some of the more general and more specific open problems
that still remain to be solved. Overview papers are necessarily biased. This
paper is biased toward the research in adaptive autonomous agents that has
taken place at the Al Laboratory and Media Laboratory of the Massachusetts
Institute of Technology.

The paper is structured as follows. Section 2 introduces the concept of an
adaptive autonomous agent and defines the basic problems the field is trying
to solve. Section 3 discusses the guiding principles of research in adaptive au-
tonomous agents. Section 4 identifies the common characteristics of solutions
that have been proposed. Section 5 discusses some example state of the art
agents stemming from three different application domains: mobile robotics, in-
terface agents and scheduling systems. Section 6 presents a critical overview of
the state of the art. It discusses the main architectures that have been proposed
for building agents. In particular, it addresses progress made in models of ac-
tion selection and models of learning from experience. Section 7 presents some
overall conclusions.

2 What is an Adaptive Autonomous Agent?

An agent 1s a system that tries to fulfill a set of goals in a complex, dynamic
environment. An agent is situated in the environment: it can sense the envi-
ronment through its sensors and act upon the environment using its actuators.
An agent’s goals can take many different forms: they can be “end goals”, or
particular states the agent tries to achieve; they can be a selective reinforcement
or reward that the agent attempts to maximize; they can be internal needs or
motivations that the agent has to keep within certain viability zones, and so on.
An agent is called autonomous if it operates completely autonomously, i.e. if it
decides itself how to relate its sensor data to motor commands in such a way



that its goals are attended to successfully. An agent is said to be adaptive if it is
able to improve over time, i.e. if the agent becomes better at achieving its goals
with experience. Notice that there is a continuum of ways in which an agent can
be adaptive, from being able to flexibly adapt to short-term, smaller changes
in the environment, to dealing with more significant and long-term (lasting)
changes in the environment, i.e. being able to change and improve behavior
over time.

Depending on what type of environment it inhabits, an agent can take many
different forms. Agents inhabiting the physical world are typically robots. An
example of such an agent would be an autonomous vacuuming robot. Agents
inhabiting the “cyberspace” environment consisting of computers and networks
are often called “software agents” or “interface agents” or sometimes also “kno-
bots”. An example of such an agent would be a system that navigates computer
networks to find data of a particular nature. Finally, agents can inhabit simu-
lated physical environments. An example of such an agent could be a “synthetic
actor” in a computer animated world. Combinations of these three types of
agents may exist. For example, in the ALIVE interactive environment[39], the
animated (virtual) agents employ real sensors (namely a camera), to decide how
to react to a person’s movements and gestures.

Even though artificial intelligence aims to study intelligence by synthesizing
artificially intelligent systems, mainstream Al has so far concentrated on prob-
lems that are very different than that of modeling adaptive autonomous agents.
Some key points which distinguish traditional Al from the study of autonomous
agents are:

1. Traditional Al has focussed on systems that demonstrate isolated and
often advanced competences (e.g. medical diagnosis, chess playing, etc).
Traditional Al systems provide “depth” rather than “width” in their com-
petence. In contrast, an autonomous agent has multiple integrated com-
petences. Typically the competences are lower-level competences. For a
robot these are competences such as locomotion, navigation, keeping the
battery charged, collecting objects, etc. For other systems these might
be other simple competences, like reacting in a market system by simple
bidding and buying behaviors [42] or executing a simple software routine
in the case of an interface agent [40].

2. Traditional Al has focussed on “closed” systems that have no direct in-
teraction with the problem domain about which they encode knowledge
and solve problems. Their connection with the environment is very con-
trolled and indirect through a human operator. The operator recognizes a
problem in the domain and describes it to the system in the symbolic lan-
guage that the system understands. The system then returns a symbolic
description of an answer or solution, which then has to be implemented
by the operator in the actual domain. In contrast, an autonomous agent



is an “open” system. An agent is “situated” in its environment. It is
directly connected to its problem domain through sensors and actuators.
It can affect or change this domain through these actuators. The problem
domain is typically very dynamic, which means that the system has a lim-
ited amount of time to act and that unpredictable events can happen. It
typically also incorporates other acting agents (human and/or artificial).

. Most traditional Al systems deal with one problem at a time. The prob-
lem the system has to solve is presented to the system by the human
operator. Often, the system does not have time constraints for solving the
problem and does not have to deal with interrupts (although the operator
might have to deal with such problems). From the system’s point of view
the problem domain does not change while the system is computing. In
contrast, an agent is autonomous: the system is completely self-contained.
It has to monitor the environment and figure out by itself what the next
problem or goal to be addressed is. It has to deal with problems in a
timely fashion. Typically an agent has to deal with many conflicting goals
simultaneously.

. Traditional Al focuses on the question of what knowledge a system has.
ATl systems have declarative “knowledge structures” that model aspects
of the domain of expertise. All of the internal structures, apart from
an interpreter, are static. The system is only active when a problem 1s
posed by the human operator, in which case the interpreter uses the static
knowledge structures to determine the solution to the problem. In con-
trast, the emphasis in autonomous agent research is on what behavior a
system demonstrates when put into its environment. The internal struc-
tures of an agent are dynamic “behavior producing” modules as opposed
to static “knowledge structures”. They do not have to be initiated by a
goal formulated by a user. It is less important that the agent can answer
questions about its problem domain (such as how it solves a particular
problem). Tt is also less important that the user is able to inspect the
internal structures and identify those that are responsible for particular
aspects of the resulting behavior. For example, it is acceptable for goals or
plans to be emergent observable properties that cannot be attributed to
one particular internal structure (but that instead are the result of some
complex interaction among a set of structures and the environment).

. Finally, traditional Al is not usually concerned with the developmental
aspect or the question of how the knowledge structures got there in the
first place and how they should change over time. They do not have to be
adaptive to changing situations (components breaking down, etc). Most of
the work done in traditional machine learning assumes that a lot of back-
ground knowledge is available. This background knowledge is used by
the system to do knowledge reformulation or knowledge compilation (e.g.



cacheing, explanation based learning, concept learning, etc). In contrast,
in autonomous agent research there is a strong emphasis on “adaptation”
and on a “developmental approach”. This often means that the system im-
proves its own internal structures (and thus its behavior) over time, based
on its experience in the environment. The agent actively explores and up-
dates its structures using an incremental, inductive learning method. In
other cases, this means that the designer takes an incremental approach to
building the agent: the user gradually evolves a more sophisticated system
by adding structure to an already existing “working” system.

The main problem to be solved in autonomous agent research is to come
up with an architecture for an autonomous agent that will result in the agent
demonstrating adaptive, robust and effective behavior. Adaptive means that
the agent improves its goal-achieving competence over time. Robust means
that it never completely breaks down (it demonstrates graceful degradation
when components within the agent fail or when unexpected situations happen).
Effective means that the agent 1s successful at eventually achieving its goals.
Specifically, two related subproblems have to be solved:

1. The problem of action selection:
How can an agent decide what to do next so as to further the progress to-
wards its multiple time-varying goals? How can it deal with contingencies
or opportunities that may arise? How can it arbitrate among conflicting
goals? How can it deal with noisy sensors and actuators? How can it react
in a timely fashion? etc.

2. The problem of learning from experience:
How can an agent improve its performance over time based on its experi-
ence? How can 1t decide when to “exploit” its current best action, versus
“exploring” other actions so as to possibly discover better ways of achiev-
ing its goals [21]7 How can it incorporate the feedback from the world into
its internal behavior-producing structures? How can it correct “wrong”
or ineffective behavior-producing structures? etc.

Section 6 discusses both of these problems in more detail. In summary, the
main goal of research in autonomous agents is to better understand the prin-
ciples and organizations that underlie adaptive, robust, effective behavior. A
secondary goal is to also develop tools, techniques and algorithms for construct-
ing autonomous agents that embody these principles and organizations. We call
the totality of a set of principles, an organization and the set of tools, algorithms
and techniques that support them, an “architecture” for modeling autonomous
agents.

One of the few things that has become clear in the last couple of years is that
there does not exist one such architecture that can be considered optimal in all
respects (or better than all the other ones proposed). Rather, the goal of our



research has become to develop an understanding of which architectures are the
most simple solution for a given class of agent problems. More specifically such
a problem class is defined in terms of particular characteristics of the agent’s
resources (e.g. memory, sensors, compute power), and particular characteristics
of the tasks and environment [64] [32].

3 Guiding Principles

The study of Adaptive Autonomous Agents is grounded in two important in-
sights. These serve as “guiding principles” for the research performed:

e Looking at complete systems changes the problems often in a favorable
way.

e Interaction dynamics can lead to emergent complexity.

The first realization is that viewing the problem of building an intelligent
system in its context can make things a lot easier. This observation is true at
several levels:

1. The intelligent functions that are being modeled, such as perception, plan-
ning, learning, etc, are part of a complete intelligent system, namely the
agent. Building systems in an integrated way rather than developing mod-
ules implementing these functions independently, often makes the task a
lot easier. For example, a system that can learn can rely less on plan-
ning because it can cache computed plans for future reuse. A system that
has sensors and actuators can perform tests in the environment and as
such has less of a need for modeling its environment and for inference and
reasoning. A system that has sensors has an easier job disambiguating
natural language utterances, because most likely they are related to the
objects the system currently perceives, and so on.

2. A complete intelligent system is always part of some environment; it is
situated in some space. This implies that there is less of a need for mod-
eling, because the “world is its own best model” [11]. The environment
can also be used as an external memory, for example, for reminding the
system which tasks still have to be performed and which ones it already
did perform [59]. The environment usually has particular characteristics
that can be exploited by the system. For example, offices consist of ver-
tical walls and horizontal floors, doors typically are of a particular size,
etc. These “habitat constraints” can be exploited by the system, making
its task much easier [22].

3. An intelligent system is not only situated in space, but also in time. This
implies that the system can develop itself so as to become better at its task,



if time and the particular task permit (through learning from experience).
Time also allows for the construction of an iterative, incremental solution
to a problem'. For example, a natural language system situated in time
does not need to be able to disambiguate every utterance. It can engage
in a discourse, e.g. asking questions or making particular remarks that
will help it to gradually disambiguate whatever the other speaker wants
to convey.

4. Finally, every intelligent system is typically also part of a society. Other
agents in the same environment are dealing with similar or related prob-
lems. Therefore there is no need for the agent to figure everything out
by itself. For example, a mobile robot could use the strategy of closely
following a person passing by, in order to achieve the competence of nav-
igating in an office environment without bumping into things. Maes and
Kozierok [40] report on some experiments in which interface agents learned
to perform certain tasks by observing and imitating users.

As a consequence of the above ideas, autonomous agent research has con-
centrated on modeling systems within their context. Except for expert systems
research, traditional Al has concentrated on more abstract and hypothetical
problems, while Behavior-Based Al or agent research has built “real” systems
that solve an actual (small) problem in a concrete environment.

A second major insight upon which the study of Autonomous Agents is
founded is that interaction dynamics among simple components can lead to
emergent complexity (see also [51]). Agent research is founded on the belief
that shifting into the “interaction” domain as opposed to the “component”
domain will make it easier to solve the problem of building intelligent systems.
This idea also applies at several different levels [12]:

1. Interaction dynamics between an agent and its environment can lead to
emergent structure or emergent functionality. This idea is inspired by the
field of ethology. Ethologists have stressed that an animal’s behavior can
only be understood (and only makes sense) in the context of the particular
environment it inhabits. Braitenberg, a cybernetician, also convincingly
illustrated a similar idea in his book “Vehicles” [9]. Finally, in AT, Simon
[55] referred to the same idea when he discussed the example of an ant
on the beach. He notes that the complexity of the ant’s behavior is more
a reflection of the complexity of the environment than of its own internal
complexity. He muses that one could think that this is true for human
behavior. Many years later, Agre [1] showed how behavior as complex as
goal-directed action sequences can be modeled as an emergent property

1Situatedness in time cuts both ways: it also means that the agent has to react in a timely
fashion and be able to deal with interrupts.



of the interaction dynamics between a complex environment and a reflex-
guided agent. What this all means is that the internal structures control-
ling an agent need not be complex to produce complex resulting behavior.
It is often sufficient to study the particular properties of the environment
and find an interaction loop, a set of feedback or reflex mechanisms that
will produce the desired behavior. One consequence is that we need a
better understanding of the particular characteristics of an environment.
If we want to be able to understand or prove aspects about the resulting
performance of autonomous agents, we have to model the agent as well
as its environment [5] [23]. Another consequence is that we need better
models of the interaction dynamics between an agent (or components of
the agent) and its environment.

2. Simple interaction dynamics between the different components within an
agent can lead to emergent structure or emergent functionality. For ex-
ample, Mataric’s wall-following robot does not have a single component to
which the expertise of wall-following can be attributed [43]. One module
is responsible for steering the robot towards the wall when the distance
to the wall 1s above some threshold while another module is responsible
for steering the robot away from the wall when the distance is below some
threshold. Neither one of these modules is primarily “responsible” for the
wall following behavior. It is their interaction dynamics that makes the
robot follow walls reliably. In Maes’ networks [33], none of the component
modules is responsible for action selection. The action selection behavior
is an emergent property of some activation/inhibition dynamics among
the primitive components of the system.

3. Interaction dynamics between the component agents of a social system can
lead to emergent structure or functionality. Deneubourg [16] [17] describes
how social insects following simple local rules can produce emergent com-
plexity such as a path to a food source, food foraging trees, etc. Malone’s
collection of autonomous bidding systems addresses the complicated task
of process-processor allocation [42]. Finally, anthropologists have stud-
ied how different concepts and complex methods for solving problems are
gradually shaped through social interaction among different people [59]
[54].

What is important is that such emergent complexity is often more robust,
flexible and fault-tolerant than programmed, top-down organized complexity.
This is the case because none of the components is really in charge of produc-
ing this complexity. None of the components is more critical than another one.
When one of them breaks down, the system demonstrates a graceful degradation
of performance. Since all of the components interact in parallel, the system is
also able to adapt more quickly to environmental changes. Often the system ex-
plores multiple solutions in parallel, so that as soon as certain variables change,



the system is able to switch to an alternative way of doing things. For example,
in Maes’ system [33] several sequences of actions are evaluated in parallel, the
best one determining the behavior of the agent. Also in Malone’s system [42]
several mappings of processes to machines can be viewed as being explored in
parallel.

4 Characteristics of Agent Architectures

Many of the architectures for autonomous agents that have been proposed have
characteristics in common. This section lists these shared characteristics and
contrasts them with the characteristics of traditional Al architectures. These
differences are illustrated by means of some concrete examples in the next sec-
tion.

Task-Oriented Modules

In traditional Al, an intelligent system is typically decomposed along “functional
modules” such as perception, execution, natural language communication (the
peripheral components), a learner, planner and inference engine (the central
systems components). These modules are typically developed independently.
They rely on the “central representation” as their means of interface. The
central representation includes things such as beliefs, which are updated by the
perception component and processed and augmented by the inference engine
and natural language component, desires (or goals) and intentions, which are
produced by the planner.

In contrast, an agent is viewed as a set of competence modules (often also
called behaviors) [10]. These modules are responsible for a particular small
task-oriented competence. FEach of the modules is directly connected to its
relevant sensors and actuators. Modules interface to one another via extremely
simple messages rather than a common representation of beliefs; and so on.
The communication between modules is almost never of a “broadcast” nature,
but happens rather on a one-to-one basis. Typically the messages consist of
activation energy, or simple suppression and inhibition signals, or simple tokens
in a restricted language. In addition to communication via simple messages,
modules also communicate “via the environment”. One module may change
some aspect of the environment which will trigger another module, etc.

Task-Specific Solutions

In traditional Al, the different functional components of the system are mod-
eled as general and domain-independent as possible. The hope is that the same
functional components can be used for different problem domains (a general
domain-independent planner, learner, etc). The only component that needs to



be adapted is the central representation, which contains domain-specific infor-
mation such as a model of the particular environment at hand and possibly also
more heuristic knowledge.

In contrast, an agent does not have “general” or task-independent func-
tional modules. There is no general perception module, no general planner, etc.
Each of the competence modules is responsible for doing all the representation,
computation, “reasoning”, execution, that is necessary for the particular com-
petence it is responsible for. For example, an obstacle avoidance module might
need one bit of information to represent whether an obstacle is perceived or not
within a critical range. It might do some very simple computation to decide how
an obstacle should be avoided. Competence modules are self-contained, black
boxes. They might employ completely different techniques (even different hard-
ware) to achieve their competence. Part of the reason for this more pragmatic
approach is a pessimistic vision about whether it is possible at all to come up
with a general solution to the vision problem, a general solution to the planning
problem, etc, a view also expressed by Minsky [47].

Role of Representations is De-emphasized

In traditional Al, the key issue emphasized is that the agent has a complete,
correct internal model; an accurate copy of the environment (with all its objects
and relationships) inside the system, that the system can rely on to predict how
its problems can be solved.

In contrast, in agent research there is little emphasis on modeling the envi-
ronment. First of all, there is no central representation shared by the several
modules. The system also does not attempt to integrate the information from
different sensors into one coherent, objective interpretation of the current situ-
ation. Instead, every task-oriented module locally represents whatever it needs
to represent to achieve its competence. The localized representations of dif-
ferent modules are not related and might be inconsistent with one another or
redundant. Within one competence module, the usage of representations may
be minimized in favor of employing the environment as a source of information
(and a determiner of action). The representations within one module are often
of a less propositional, objective and declarative nature than those employed in
traditional Al. For example they might index objects according to the features
and properties that make them significant to the task at hand [1] rather than
the identities of the objects. They can be of a numeric, procedural [44] or ana-
log nature. Often a lot of task-specific “problem solving” is performed in the
perception part of a particular competence [57] [14] [2].

Decentralized Control Structure

Traditional Al adopts a sequential organization of the different modules within
the system. The modules take turns being “active” or processing and changing
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the internal representations. Perception and inference first update the internal
model (beliefs and goals). After that, planning or problem solving produce a
description of the solution to the problem (a plan or the answer to a question).
Finally, either the execution module or a human operator implements the solu-
tion in the domain (the latter one having more knowledge and understanding
of the situation than the former one).

In contrast, agent architectures are highly distributed and decentralized. All
of the competence modules of an agent operate in parallel. None of the modules
is “in control” of other modules. However, some simple arbitration method
is included in order to select or fuse multiple conflicting actuator commands
(commands of different modules might be mutually exclusive). This arbitration
network might be a winner-take-all network, as in [33] or a hardcoded priority
scheme as in [10]. Because of its distributed operation, an agent is typically
able to react quickly to changes in the environment or changes in the goals of
the system.

Goal-directed Activity is an Emergent Property

Traditional Al models activity as the result of a “deliberative thinking” process.
The central system evaluates the current situation as represented in the internal
model and uses a search process to systematically explore the different ways in
which this situation can be changed so as to achieve a goal situation.

In contrast, in agents, activity is not modeled as the result of a deliberative
process. Instead, complex and goal-directed activity is modeled as an emergent
property of the interaction among competence modules internally, and among
competence modules and the environment. There i1s no internal structure cor-
responding to “the plan” of the system. Many agents do not have any explicit
goals, but are nevertheless still driven towards a specific set of fixed, compiled-
in goals. In other architectures, the agent has an explicit representation of its
(possibly time-varying) goals, which is used to modify the priorities among the
different modules over time.

Role for Learning and Development

In traditional Al learning typically consists of compilation or reformulation of
what the system already knows. For example, the system might cache a plan
for later reuse. Very seldom does the system perform inductive learning of new
information or corrective learning of existing knowledge based on environmental
experimentation and feedback. This implies that the programmer is completely
responsible for creating an initial complete and correct model for the system to
use.

In contrast, learning and development are considered crucial aspects of an
adaptive autonomous agent [69]. Building an adaptive system that will de-
velop from a not so successful system into one that achieves the tasks, is often
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considered a better approach than building a successful system that does not
change when the environment or task changes (e.g. a robot breaking one of its
legs). In some systems, the evolution towards increasingly more sophisticated
and more adaptive behavior i1s simulated by the programmer, e.g. by incremen-
tally adding more structure to existing successful systems [11]. Other systems
employ learning by the individual [38] [35] [69] [18] [25] [62]. In almost all
cases, the system concentrates on learning new information (or behavior) from
its environment, rather than on reformulating information it already has. The
learning algorithms are implemented in a distributed way: typically a similar
learning algorithm runs in different competence modules. Related to the idea
of learning is that of redundancy: often the system has multiple modules for a
particular competence. Experience sorts out which of these modules implements
the competence in a more reliable way and should thus be preferred [38] [50]

[18].

Systems built using all of the above principles (task-oriented modules, task-
specific solutions, de-emphasized representations, decentralized control, etc)
tend to demonstrate more adaptive and robust behavior. They act (and re-
act) quickly, because (1) they have fewer layers of information processing, (2)
they are more distributed and often non-synchronized, and (3) they require less
expensive computation (they are not prone to problems of combinatorial explo-
sions, because they do not rely on search processes as much). They are able to
adapt to unforeseen situations (opportunities as well as contingencies), because
they rely much more on the environment as a source of information and a de-
terminer of action than on their possibly faulty or outdated model. They are
robust because (1) none of the modules is more critical than the others, (2) they
do not attempt to fully understand the current situation (which is often time
consuming and problematic), (3) they incorporate redundant methods and (4)
they adapt over time.

5 Some Example Autonomous Agents

A Mobile Robot

Consider a mobile surveillance robot that has to monitor some offices. Its task
requires that it navigate from room to room. The traditional Al version of
this robot could work in a similar way to Shakey [48]. The perception module
processes the different sensor data and integrates them into a representation of
the environment. It attempts to update this model as often as possible. The
model includes information such as the location of the robot in the environment,
the location and type (often even identity) of other objects in this environment
such as chairs, tables, etc. The model is used by the planning module to decide
how to fulfill the goal of finding the door in the current room, while avoiding
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obstacles. The planner goes through a systematic search to produce a list of
actions that will according to the model fulfill both goals. The execution module
executes this plan while possibly checking at certain points whether things are
going as predicted. If not, control is returned to the planner.

An adaptive autonomous agent for the same task could be constructed in
the following way (as inspired by[10]). In an incremental way, several modules
would be implemented corresponding to the different competences necessary for
the task: a module for recognizing and going through doors, a module for wall
following, a module for obstacle avoidance (or even a couple of redundant ones,
using different sensors, since this is a very critical competence), and so on. All
of these modules operate in parallel. A simple arbitration scheme, for example
suppression and inhibition wires among these modules, suffices to implement the
desired priority scheme: the obstacle avoidance modules always have priority
over going through doors, which has priority over wall following. This robot
does not plan a course of action. However, from an observer’s point of view it
will appear to operate in a systematic, rational way. Brooks [10] [11] has argued
convincingly, in writing and in demonstrations, which of the two above robots
will be more successful at dealing with the task in a robust and reliable way?.

An Interface Agent

Consider the problem of building an intelligent autonomous system that helps
the user with certain computer-based tasks. Its goal is to offer assistance to the
user and automate as many of the actions of the user as possible. Traditional Al
has approached this problem in the following way [60]. The system is given an
elaborate amount of knowledge about the problem domain by some knowledge
engineer: a model of the user and possibly the user’s organization, a model
of the tasks the user engages in, including a hierarchical specification of the
subtasks, knowledge about the vocabulary of these tasks, and so on. At run-
time, the agent uses this knowledge to recognize the intentions and plans of the
user. For example, if a UNIX user enters a command like “emacs paper.tex”,
the system infers that the user is planning to produce a written document. It
then plans its own course of action (the goal being to assist the user), which
for example might consist of the action sequence: the text formatting command
“latex paper.tex”, followed by the preview command “xdvi paper.dvi” and the
printing command “lpr paper.dvi”. The problems with this approach are exactly
the same ones as those of traditional Al robots: it is hard to provide such a
complete and consistent model and the model is quickly outdated (as the user’s
ways of performing tasks change). Because of the computational complexity
of the approach, the system would react very slowly. All sorts of unpredicted

?Ideally, the robot would also monitor the results of its actions and learn from experience so
as to improve its competence or deal with significant changes in the robot or its environment,
i.e. so as to demonstrate robust and effective autonomous behavior over longer periods of
time.
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events might take place that the system cannot deal with, for example, the user
might change his/her mind about what to do in the middle of things, or might
perform tasks in unorthodox or non-rational ways, etc.

Instead, an adaptive autonomous “interface agent” can be built as follows
[40]. Several competence modules are constructed that are experts (or try to
become experts) about a small aspect of the task. For example, one module
might be responsible for invoking a particular command (like “lpr”) at a par-
ticular moment. The agent is situated in an environment containing an ideal
source for learning: the user’s behavior. Each of the modules gathers informa-
tion by observing the user and keeping statistics about a particular aspect of
the user’s behavior. For example, the above mentioned module will keep track
of the situations in which the user executed the “lpr” command. Whenever a
new situation comes up that is very similar to one of one or more memorized
situations, it actually offers to the user to execute the “Ipr” command. If we
have several experts for the different commands listed above, each of these will
know when to become active and offer their assistance to the user. From an ob-
server’s point of view, it will seem as if the system “understands” the intentions
of the user, as if it knows what the task of producing a document involves. Nev-
ertheless, the action sequences are just an emergent property of a distributed
system. The system will smoothly adapt to the changing habits of the user, will
react in a fast way, will be less likely to completely break down, and so on.

A Scheduling System

Finally, consider the problem of building a scheduling system that has as goal
to allocate processes to processors in real-time. Again the domain is a very
dynamic one: new processing jobs are formulated in different machines all the
time. The decision to be made is whether to run these processes locally or on
a different machine, the global goal being to minimize the average amount of
time it takes to run a process. The loads of the different available machines
vary continuously. Certain machines might suddenly become unavailable for
scheduling processes, requiring a rescheduling of the jobs that were running on
those machines at the time, and so on. A traditional Al system for this task
would contain a lot of knowledge about scheduling and about the particular
configuration of machines and typical processing jobs at hand. The system
would update its representation of the current situation as often as possible.
This requires gathering all the data from the different machines in the network
on whether they are still available, what their workload is, which processes they
are running, which new processes were formulated on them, etc. Once all this
information has been gathered, the system would perform a systematic search
(possibly involving some heuristics) for the most optimal allocation of processes
to processors. Once that schedule has been produced, the processing jobs can
actually be sent to the different machines that they have been assigned to. This
centralized way of solving the problem is present in the majority of the earlier
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work in this area [29].

Among others, Malone has proposed a different solution to this problem
[42], that one could call more “agent-based”. In his Enterprise system, each
of the machines in the network is autonomous and in charge of its own work
load. The system is based on the metaphor of a market. A machine on which
a new processing task originates sends out a “requests for bids” for the task to
be done. Other machines may respond with bids giving estimated completion
times that reflect their speed and currently loaded files. For example, if the
task to be performed is a graphics rendering job and some machine has that
software loaded, it will make a better bid for the new job (because it does not
have to waste time and space loading the necessary software). The machine
that sent out the request for bids will collect the bids it receives over some
small period of time and allocate the job to the machine that made the best bid
(either remote or local). This distributed scheduling method was found to have
several advantages. The system is very robust because none of the machines is
more critical than another one (there is no central scheduler). A user can make a
machine unavailable for processing external jobs at run-time. The whole system
will adapt smoothly to this unexpected situation. The solution is simple and
yet very flexible in terms of the different factors it can take into account.

6 Overview of State of the Art

Section b presented a general overview of the agent approach to building intelli-
gent systems that demonstrate adaptive, robust behavior. This section provides
a more detailed account of the specific architectures that have been proposed.
In addition, i1t lists what the limitations and open problems are of the partic-
ular architectures proposed. Section 2 argued that there are two subproblems
involved in modeling adaptive autonomous agents: the problem of action selec-
tion and the problem of learning from experience. This section is structured
around these two subproblems. Most of the architectures for agents that have
been proposed so far have concentrated on one or the other subproblem: ei-
ther the agent combines simplistic action selection with sophisticated learning
or 1t demonstrates sophisticated action selection without doing any learning.
Few proposals have addressed both problems at once in the same architecture.
In the remainder of this section a more detailed description of both of these
subproblems is given, followed by a discussion of what progress has been made
towards them, and a discussion of what questions remain unresolved.

6.1 Action Selection
6.1.1 The Problem

The problem of action selection can be stated as follows. Given an agent that
has multiple time-varying goals, a repertoire of actions that can be performed
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(some of which are executable) and specific sensor data, what actions should
this agent take next so as to optimize the achievement of its goals3. Notice
that when we also consider learning from experience, this problem becomes a
slightly different one because one of the goals of the agent is to learn how to
better achieve its goals.

It is theoretically possibly to compute the optimal action selection policy for
an agent that has a fixed set of goals and that lives in a deterministic or prob-
abilistic environment [67]. What makes it impossible to do this for most real
agents is that such an agent has to deal with (i) resource limitations (time, com-
putation, memory), (ii) possibly incomplete and incorrect information (sensor
data), (iii) a dynamic, non-deterministic, non-probabilistic environment, (iv)
time-varying goals, (v) unknown and possibly changing probability distribu-
tions, and so on.

The goals the agent tries to satisfy can take many different forms: end-goals
also called “goals of attainment” (end states to be achieved), negative goals
(states to be avoided), needs, drives, desires, tasks, motivations, constraints for
a plan, viability zones for certain state variables, etc. An agent typically has
multiple conflicting goals. Being a “complete” system it always has a combi-
nation of “self-preservation goals” (e.g. not bump into obstacles, keep battery
charged) as well as more task-oriented goals (watch over a set of offices). The
goals of an agent can be implicit or explicit. In the former case, the agent does
not have any explicit internal representation of the goals it 1s trying to achieve.
The agent is built in such a way that, when situated in its environment, its
behavior tends to achieve certain goals. Implicit goals are necessarily fixed.
They cannot be changed unless the agent is reprogrammed. More complicated
agents have explicit goals that vary over time and often have levels of intensity
as opposed to a boolean on-off nature. For example, an artificial animal might
have a particular hunger level, thirst level, etc.

Given that it is theoretically impossible to prove what the optimal action
selection policy for an agent is, how does the field evaluate a particular proposed
solution? Researchers in adaptive autonomous agents are not interested in prov-
able optimality of action selection, i.e. in whether the agent takes the optimal
path towards the goals, as they are in whether the action selection is robust,
adaptive and whether the agent achieves its goals within the requirements and
constraints imposed by the particular environment and task at hand. Among
other issues this means that the action selection mechanism should:

e favor actions contributing to the goals, in particular, it should favor those
actions that result in the most progress towards the goals,

e be able to flexibly deal with opportunities and contingencies,

3In this definition, one can substitute the word “competence module” or “behavior” for
“action”: given a set of competence modules that all try to control the actuators at a particular
moment in time, which ones of those should be given priority, or how should their outputs be
combined into one command for the actuators?
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e be real-time (fast enough for the particular environment at hand and its
pace of changes),

e minimize unnecessary switching back and forth between actions contribut-
ing to distinct goals,

e improve on the basis of experience (more on this in the next section),

e demonstrate graceful degradation when components break down or unex-
pected changes happen,

e never get completely stuck in a loop or deadlock situation, or, make the
agent mindlessly pursue an unachievable goal,

e and most importantly, be “good enough” for the environment and task
at hand: as long as the agent manages to achieve its goals within the
constraints (time, quality, etc) required by the problem situation, the so-
lution is considered an acceptable one. For example, as long as the robot
manages to find the recharging station before its battery dies, as well as
make sufficient progress towards its more task-specific goal of surveying
the offices, it is considered an acceptable solution, even if it does not al-
ways follow optimal paths. Brooks [11] refers to this latter criterion as
“adequacy”.

McFarland [45] takes this last point even further. He argues that one should
use an ecological approach to evaluate agent behavior: if an agent fills a market
niche, then that agent i1s considered successful. That is, in McFarland’s view,
for agent behavior to be adaptive means that it must optimize its behavior
with respect to the selective pressures of the market place. Even though this is
ultimately true, it is not particularly useful as a means for comparing different
proposals for agent architectures.

Tyrrell [67] compares several action selection proposals, but he does so with
respect to one particular benchmark environment and task. Maes [36] and Wil-
son [70] have argued that it is not possible to decide that one action selection
model is better than another one unless one also mentions what the particular
characteristics are of the environment, the task and the agent. For example, in
an environment where the cost of (incorrect) actions is high, an agent should do
more anticipation; while if the cost of (incorrect) actions is neglectable, it does
not matter if the agent often performs incorrect actions; in an environment
where a lot of things change quickly, an agent needs to act very quickly; an
agent with noisy sensors should have some inertia in its action selection so that
one wrong sensor reading does not make the agent switch to doing something
completely new and different; an agent with many sensors can rely on the envi-
ronment to guide its selection of actions, while an agent with fewer sensors will
need to rely more on its internal state or memory to decide what to do next.
Todd and Wilson [64] and Littman [32] have started to build a taxonomy of
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environments and taxonomy of agents that will provide a more profound basis
for comparing different proposals.

6.1.2 Progress Made

The different models for action selection in an autonomous agent that have been
proposed differ in the way they deal with the following three problems:

1. What is the nature of the goals?
2. What is the nature of the sensor data?

3. What 1s the arbitration mechanism and command fusion mechanism?

The architectures proposed can be subdivided in the following three classes:

Hand-built, Flat Networks.

A number of architectures have been proposed that require the designer of
the agent to solve the action selection problem from scratch for every agent that
is built. Examples of such architectures are the Subsumption Architecture [10]
and the architectures reported in [15] (a minimalist version of the Subsumption
Architecture) [1] [14] [4] and others. All of these architectures require the de-
signer of an agent to carefully analyze the environment and task at hand and
then design a set of reflex modules and a way of combining the outputs of the
modules (by means of suppression and inhibition wires or simple arbitration
circuitry).

This class of architectures deals with the above three problems in the follow-
ing way. Typically goals are implicit: they only exist (or may not even exist)
in the designer’s mind. An agent can have multiple goals and they can be of
very different nature. The nature of the sensor data is also unlimited. The
arbitration mechanism determining which modules will steer the actuators is
implemented by a logical circuit or a set of suppression and inhibition wires.
This circuit ensures that at most one module controls an actuator at all times.
None of these architectures support command fusion. In other words, none of
these action selection models make it possible for two or more modules to si-
multaneously determine what the command is that is sent to the actuators. For
example, 1t is not possible to average the outputs of two modules.

One disadvantage of this class of solutions is that they don’t offer the user
much guidance as to how to solve the problem of action selection for a new
agent. The architecture at most provides a philosophy, a set of previous suc-
cessful examples and a programming language for building new agents. Another
disadvantage of this class of solutions is that its solution does not scale up. For
more complex agents the problem of action selection and arbitration among
modules is too hard to be solved by hand. The arbitration network often be-
comes a complicated “spaghetti” that is hard to debug or to get to do the right
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thing. A final disadvantage is that most of these architectures do not allow for
time-varying goals (because typically goals are not explicitly represented in the
agent).

Compiled, Flat Networks.

A second class of architectures attempts to facilitate the construction of
agents by automating the process of designing the arbitration circuitry among
competence modules. Examples of such architectures are the Rex/Gaps system
[24], Behavior Networks [33] and Teleo-Reactive Trees [49]. These architectures
require the designer to specify in a particular formalism what the goals of the
agent are, how goals can be reduced to other goals or to actions and what
the different modules/actions are and their conditions and expected effects. A
compiler analyzes this specification and generates a circuit that will implement
the desired goal-seeking behavior.

In Kaelbling’s and Rosenschein’s work [24], the types of goals and sensors
that can be dealt with are restricted to booleans. On the one hand this re-
stricts the type of agent that can practically be built*, but on the other hand
these restrictions make it possible to prove that the circuitry synthesized will
make the agent select the right actions so as to fulfill its goals. In most of the
work, except for [33], these types of architectures produce agents with implicit,
fixed (not time-varying) goals. However, in contrast with the previous class of
architectures, the goals are explicit in the designer’s formal specification of the
agent. This implies that the agent’s circuitry has to be resynthesized if the
agent should fulfill a different set of goals.

Maes [33] [37] proposes an architecture with explicit, time-varying goals. The
arbitration network that is compiled has an explicit representation of the goals
of the agent and these goals can have intensities that vary over time (e.g. hunger
level for an artificial animal, or motivation to recharge the battery of a robot).
This particular system performs a limited form of arbitration, prediction and
“planning” at run-time. More specifically, these processes are modeled in terms
of a time-varying spreading activation process which makes activation energy
accumulate in modules that are most relevant given the particular goals (and
intensities) and sensor data at hand. Unfortunately in this system the sensor
data are restricted to booleans.

One of the disadvantages of this class of action selection architectures is that
the class of agents that can be built is restricted. This is the case because these
architectures offer a particular model of action relevance, while the previous
category does not impose any model at all. A second problem is that it is
sometimes hard to come up with a declarative specification of the goals and
desired behavior of an agent. Finally, the agent’s action selection will only be
as good as the specification it relies on. If the designer’s specification of the
effects of actions is erroneous, then the agent’s behavior will not be as desired.

4 At the least, it makes it more complicated to build certain kinds of agents.
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Hand-built, Hierarchical Networks.

A final category of action selection models proposes a more hierarchical
organization of the different actions or competence modules. Examples of such
architectures are Agar [65], Hamsterdam [7], Rosenblatt and Payton’s work
[52], which is a more sophisticated version of the Subsumption Architecture and
Tyrrell’s work [67]. Most of these architectures are closely inspired by models
of animal behavior stemming from ethologists such as Lorenz and Tinbergen.
Typically these architectures organize actions in a hierarchy that ranges from
high-level “modes” or activities via mid-level composite actions to detailed,
primitive actions. Only the primitive actions are actually executable. Tyrrell
[67] and Blumberg [7] both have demonstrated that when scaling the problem to
more complex agents that have many different goals and actions, it is desirable to
have more structure (than that present in flat networks) that may help decide
which actions are relevant. Typically these systems use some sort of action
selection at higher abstraction levels to prime or bias the selection of more
primitive actions.

This last category of systems supports more complex (animal-like) motiva-
tions or goals. The model of the sensors and how they affect the action selection
1s also more sophisticated. For example, some architectures make it possible for
a stimulus (sensor data) to have a certain “quality” or “intensity” that will affect
the action selection (e.g. not just “is food present”, but “is food present and
what is the quality of the food stimulus perceived”?). As is the case with the
first class of architectures discussed, these architectures require the designer to
build the arbitration network by hand. Often this is a very difficult and tricky
task, in particular because these ethology-based models tend to have a lot of
parameters that need be tuned to obtain the desired behavior.

6.1.3 Open Problems

Even though a lot of progress has been made towards the study of action selec-
tion models, many problems remain unresolved:

o Very little research has been performed on the nature of goals and goal
interactions. We need to study what kinds of goals our architectures need
to support, where those goals might come from, how they change over
time, etc. Toates and Jensen [63] present a nice overview of the different
models of motivations that ethology and psychology have come up with.

e In most of the architectures proposed, scaling to larger problems is a dis-
aster. This is especially so in the case of hand-built networks, because no
support is given to the designer of an agent for building the complicated
arbitration network that will govern its behavior. The most obvious so-
lution to be investigated is to either evolve [13] or learn and adapt the
network [35] based on experience. However, few experiments along these
lines have been performed so far.
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Related to this, not enough effort has been put into making pieces of agent
networks “reusable” within other agents. Given that the first and third
category of architectures reduce the action selection problem to a (non-
trivial) engineering problem, it would be useful if partial solutions that
have proven to work in one agent could be abstracted and reused in another
agent. For example, the modules producing wall-following behavior in one
robot could be abstracted so that they can be reused in another robot with
comparable sensors and a comparable environment.

As noted by many other authors, the dynamics of interactions between the
agent and its environment and among the different modules of one agent
are not well understood. Kaelbling and Rosenschein offer a logical model
[24], while Beer [5], Kiss [28] and Steels [58] have started approaching this
problem from a dynamical systems perspective. Nevertheless, the field is
far from being able to prove in general what the emergent behavior is of
a distributed network of competence modules.

Most of the proposed architectures do not deal with the problem of com-
mand fusion. Typically only one module at a time determines what com-
mand is sent to an actuator. There is no way for the outputs of multiple
modules to be combined. Some proposals for solutions to this problem are
presented in [52] and [7]).

All of the above architectures are completely decentralized and do not keep
any central state. As a result they may suffer from the lack of what Minsky
would call a “B-brain” [47]. They can get stuck in loops or deadlock
situations (i.e. keep activating the same actions even though they have
proven not to result in any change of state).

Most of the above architectures (apart from [14]) have a narrow-minded
view of the relationship between perception and action. For example, few
architectures support active or goal-driven perception, taking actions to
obtain different or more sensor data, etc.

6.2 Learning from Experience

6.2.1 The Problem

The previous section discussed architectures for adaptive autonomous agents

that focus on the problem of action selection. Almost all of these architectures
neglect the issue of learning from experience (except for [35] [38]). This means
that agents built using these architectures are only adaptive in a very restricted
sense: they are able to deal with unexpected situations (opportunities, contin-
gencies). However, these agents do not learn from environment feedback. They
do not become better at achieving their goals with experience.
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A second category of agent architectures that have been proposed has fo-
cussed on how the behavior (the action selection) of an agent can improve over
time. Learning from experience is a necessity for any agent that has to demon-
strate robust, autonomous behavior over long periods of time. First, this is the
case because it is very hard to program an agent. It has practically proven
impossible to correctly handcode a complex agent or to come up with a cor-
rect specification of its behavior and of the environment. Second, components
of the agent may break down or its environment may change in a permanent
way, which may require run-time “reprogramming”. Adaptive behavior can-
not be viewed as a final, static point. True adaptive behavior is an inherently
dynamic, continuous process. It is in the spirit of the field of artificial life to
view adaptive behavior as an emergent property of the long-term interaction
and feedback process between an agent and its environment.

The problem of learning from experience can be defined as follows. Given an
agent with (i) a set of actions or competence modules, (ii) certain sensor data
and (iii) multiple (time-varying) goals, how can that agent improve its action
selection behavior based on experience? How can the agent incorporate the
feedback it receives after taking an action in such a way that its action selection
behavior improves? “Improvement” typically means that the agent becomes
more successful at fulfilling its goals or needs. Depending on the nature of the
agent’s goals, this may mean different things. In the case of an “attainment
goal” or “end-goal” this would mean that the average time or average number
of actions required (or any other measure of cost) to achieve the goal decreases
over time. In the case of a reinforcement maximization type of goal, this could
mean that the average positive reinforcement received over a fixed length time
interval increases with experience.

No matter what the type of goals are it can deal with, any model for learning
in an autonomous agent has to fulfill the following desiderata:

e The learning has to be incremental: the agent should learn with every
experience. There cannot be a separate learning and performance phase.

e The learning should be biased towards learning knowledge which is rel-
evant to the goals. In complex, realistic environments an agent cannot
afford to learn every fact that can possibly be learned.

e The learning model should be able to cope with noise, probabilistic envi-
ronments, faulty sensors, etc.

e The learning should be unsupervised. The agent has to learn mostly
autonomously.

e Preferably, the learning model makes it possible to give the agent some
initial built-in knowledge (so that it does not have to learn everything
from scratch, in particular in those situations where prior knowledge is
easily available).
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There are three subproblems that have to be dealt with when designing an
architecture for a learning agent:

1. What is the action selection mechanism adopted?

2. How does the system learn? How does it create “hypotheses” to be tested?
And how does it decide which of these hypotheses are worth keeping or
using to determine the behavior of the agent?

3. How does the agent decide when to “exploit” versus when to “explore”?
How does it decide whether to activate whatever it believes is the most
optimal action for the current situation versus whether to try a suboptimal
action so as to learn and possible find a better way of doing things? That
1s, what is a good experimentation strategy for an agent?

Notice that with respect of the first of these problems, the learning archi-
tectures proposed often adopt a naive and limited view. Often the set of goals
dealt with i1s very simple and the goals are fixed over time. Some more de-
tailed problems come up when solving the above problems. For example, every
learning architecture has to deal with the problem of credit assignment: which
of the previously activated actions gets (partial) credit for a certain (desir-
able/undesirable) result happening?

How can we evaluate and compare different proposals for learning from ex-
perience? As with the problem of action selection, comparing proposals is hard
to do in the general case. The problem of learning from experience is ill-defined
unless one specifies what the particular characteristics of the environment, agent
and task are. Therefore it only makes sense to compare proposals with respect
to a particular class of problems. For example, an agent with a lot of memory
might be better off using a memory-intensive learning method, rather than do-
ing a lot of generalization to come up with a concise representation of what it
has learned. In some environments initial knowledge is easily available, which
means that it is desirable for the agent to be partially programmable (as op-
posed to learning from scratch). Depending on the environment and agent at
hand, the role of learning may be very different. In an environment that is
very predictable and that changes at a slower pace than the agent’s lifetime,
there is less of a need for learning during the agent’s lifetime. Instead, some
sort of evolution-based learning at the species level might be able to deal with
the long term adaptation required [30]. Todd and Wilson [64] and [32] present
some first steps towards a taxonomy of environments and agents that may make
comparisons more meaningful.

6.2.2 Progress Made

All of the architectures that have been proposed in the literature assume that the
agent has a set of primitive actions or competence modules. They concentrate on
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learning the arbitration network among these different actions or modules, i.e.
the agent attempts to learn when certain action(s) should be activated (when an
action should get control over the actuators). Some of the architectures proposed
allow for learning of new “composite” actions or composite competence modules
[41] [18]. They allow the agent to independently learn composite modules as
well as the arbitration network for these composite modules.

The different architectures proposed can be grouped in three classes: rein-
forcement learning systems, classifier systems and model learners. The second
class of architectures is really a special case of the first. However, since a lot of
research has been performed in classifier systems, and since this research is not
typically discussed from a reinforcement learning point of view, we will discuss
the two classes separately. Both classes define the learning problem as follows:
given a set of actions, given a reward signal, learn a mapping of situations to
actions (called an “action policy”) so that an agent following that policy maxi-
mizes the accumulated (discounted) reward it receives over time. In the case of
a model learning architecture, the agent learns a model of how actions affect the
environment (how actions map situations into other situations). Independent of
this, the agent learns (or infers) what the importance or value of taking certain
actions in certain situations is. Interesting combinations of these three types of
architectures exist. For example, some systems combine learning of an action
policy with learning of a model [8] [61].

As 1s the case with action selection models, many of the architectures pro-
posed have been inspired by theories of animal learning. In contrast with the
former, however, it is not so much the ethologist school of animal behavior stud-
ies, but rather comparative psychology and behaviorism, in particular theories of
reinforcement learning and operant conditioning, that have been an inspiration
for the computational models proposed.

Reinforcement Learning.

The idea of reinforcement learning [61] [62] [26] is the following. Given
an agent with (i) a set of actions it can engage in, (ii) a set of situations it
can find itself in, and (iii) a scalar reward signal that is received when the
agent does something; learn an action policy, or a mapping from situations to
actions, so that an agent which follows that action selection policy maximizes
the cumulative discounted reward it receives over time.

Q-learning [68] is a particularly popular reinforcement learning strategy. In
Q-learning the agent tries to learn for every situation-action pair, what the
“value” is of taking that action in that situation. More specifically, the algo-
rithm learns a two-dimensional matrix that stores a value for every possible
combination of a situation and an action. At initialization, all values are set
to some initial value. The goal of the system is to update these values so that
they converge towards the “maximum cumulative discounted reward that can
be expected when taking that action in that situation This means, the maxi-
mum cumulative reward that the agent can expect to receive in the future (from
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now on) if it takes that particular action in that situation (i.e. the immediate
reward it receives plus the reward it will receive for taking the best future ac-
tions after this one). The reward is “discounted” with respect to the future so
that rewards expected in the near future count for more than rewards expected
further down the road. The different subproblems listed above are dealt with
by reinforcement learning systems in the following way:

1. Action selection mechanism.
At any moment, the agent always finds itself in some particular situation.
Given that situation, 1t chooses the action that has the maximum value
(maximum cumulative discounted reward)

2. Learning method.
When the agent performs an action, it may receive some reward (possibly
zero). It then updates the value of the situation-action pair it just “ex-
ploited”. In particular, it increases or decreases the value of that situation-
action pair so as to better reflect the actual reward it received plus the
maximum reward it can expect in the new situation it finds itself in.

3. Exploration Strategy.
In a certain percentage of situations, the agent does not choose the action
that maximizes reward, but instead in performs a random action, so as to
gather more data or evidence about possibly interesting alternative paths.

One of the attractive features of reinforcement learning is its formal foun-
dation. It can be proven that under certain conditions (e.g. an infinite number
of trials and a Markovian environment), the agent will converge towards the
optimal action selection policy. Unfortunately these conditions are seldom at-
tainable in real, complex situations. Disadvantages of reinforcement learning
algorithms are (i) that they do not deal with time-varying goals (the action
policy learned is for a fixed set of goals), (ii) if the goals change, they have to
relearn everything from scratch ([27] attempts to overcome this problem), (iii)
for realistic applications, the size of the state space (or the number of situation-
action pairs) is so large that learning takes too much time to be practical (as a
result, researchers have started developing algorithms that can generalize over
the state space [41] [31]), (iv) learning only happens “at the fringe” of the state
space (only when a reward is received can the system start learning about the
sequence of actions leading to that reward), as a result it takes a lot of time to
learn long action sequences ([61] attempts to deal with this problem), (v) the
model assumes that the agent knows at all times which situation it is in (given
faulty sensors or hidden states this is difficult) ([71] addresses this particular
problem), (vi) it is hard to build in initial knowledge into this type of architec-
ture and finally, (vii) the model cannot learn when multiple actions are taken
in parallel®.

5In theory, reinforcement learning can deal with parallel actions by adopting a row in the
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Classifier Systems.

A second category of architectures for learning agents are based on classifier
systems [20]. In particular Wilson [69] and Booker [8] have studied how classifier
systems can be used to build adaptive autonomous agents. These architectures
can be viewed a special case of reinforcement learning systems. That is, again,
the agent attempts to learn how 1t can optimize the reward it receives for taking
certain actions in certain situations. The idea here is that an agent has a set of
rules, called “classifiers”, and some data about every rule’s performance. At the
least the system keeps a “strength” for every rule that represents the value of
that rule (how “good” it is). The three subproblems of a learning architecture
are dealt with in the following way:

1. Action selection mechanism.
Given a certain situation, which includes some external state (or sensor
data) and may include an internal state, the condition list of some classi-
fiers will match the current situation. Of all the matching classifiers, the
agent picks one or more classifiers proportional to their strength. The ac-
tions proposed by those classifiers are executed (this may involve changing
the internal state).

2. Learning method.

Whenever some classifiers are executed, they give some of their strength to
the classifiers that “set the stage”, i.e. the classifiers that were just active
at the previous timestep. This is called the “bucket-brigade algorithm”
and is designed to deal with the problem of credit assignment. Whenever
the agent executes some actions, it may receive some reward. If this is
the case, then the reward will increase the strength of all the classifiers
that were just activated (as well as all those that were not activated, but
that suggested the same action). This scheme ensures that classifiers that
contribute to a reward being received will over time have higher strengths
than those that don’t and will thus be activated more often.

3. Exploration strategy.
The number of classifiers is fixed. Every once in a while, the agent removes
those classifiers that have low strengths and replaces them by mutations
and recombinations (crossovers) of successful ones. This way, the agent
keeps exploring and evaluating different ways of doing things, while keep-
ing “good” solutions around.

One of the interesting aspects of agents based on classifier systems is that
they use a more sophisticated experimentation strategy (the experimentation
strategy of other reinforcement learning systems consists of picking a random
other data point). The hypothesis underlying this strategy is that one can

matrix for every combination of actions that is executed in parallel. In practice, however, this
would blow up the state space even more than is already the case.
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find a better solution to a problem (e.g. more effective behavior) by making
small changes to an existing good solution (existing successful behavior) or
by recombining existing promising solutions. Another advantage of classifier
systems over most other reinforcement learning systems is that they have a built-
in generalization mechanism for generalizing over situations as well as actions,
namely the “#” or “don’t care” symbol. This makes it possible for classifier
systems to sample parts of the state space at different levels of abstraction and
as such to find the most abstract representation of a classifier that is useful for a
particular problem the agent has. Unfortunately, classifier system agents share
some of the limitations of other reinforcement learning agents, in particular the
problem of time varying goals (i) and the problem of learning at the fringe (iv)
mentioned above. In addition they may suffer from the problem that they do
not keep track of everything that has been tried. A classifier system based
agent may re-evaluate the same classifier over and over again. It may throw it
out because its strength is low and then immediately create it again because
it keeps no memory of what has been tried (on the other hand, the fact that
the system “forgets” about non promising classifiers makes it more efficient at
action selection time).

Model Builders.

A final class of agents that learn from experience actually learn a causal
model of their actions, rather than a policy map [18] [38] [50]. Drescher’s model,
which was inspired by Piaget’s theories of development in infants, is probably
the most sophisticated example. The agent builds up a probabilistic model of
what the effects are of taking an action in a certain situation. This causal model
can then be used by some arbitration process to decide which action is the most
relevant given a certain situation and a certain set of goals. Action selection
and learning are much more decoupled: in fact, the learning component of one
of these agents could be combined with a different action selection mechanism.

In most of these architectures (except for [61]), the agent does not learn a
complete mapping from every possible situation-action pair to the new situation
that will result from taking that action in that situation. Rather, the agent
learns mappings from partial situations to partial situations. It maps those
aspects of a situation “that matter” (those sensor data that are necessary and
sufficient conditions) combined with an action, to aspects of the new, resulting
situation “that matter” (in particular sensor readings that change when taking
the action in the situations described by the conditions). Such a combination
of (i) a set of conditions, (ii) a primitive (or composite) action and (iii) a set
of expected results (and probabilities for these results), is called a schema [18],
or a module or behavior [38]. Model learning architectures deal with the three
subproblems defined above in the following way:

1. Action Selection Mechanism.
Agents built using these architectures can deal with time varying, multiple,
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explicit goals. Given a set of goals and intensities, they compute at run-
time which of the modules or schemas learned is most relevant to achieving
the goal as well as most reliable. There is a separate value assignment
process that is decoupled from the learning process. Often this value
assignment process favors modules that prove to be more reliable. It may
even trade off reliability of a sequence of actions for length of a sequence of
actions leading to the goals. Typically a spreading activation process [38]
or simple marker propagation process [18] is used to assign these values
given some goals and sensor data.

. Learning Method.

Whenever a particular action is taken, the agent monitors what changes
happen in the environment. It uses this information to learn correlations
between particular conditions-action pairs and certain results. After an
action is taken, all result lists (and their probabilities) of applicable mod-
ules/schemas (that have the same action as the one taken and a matching
condition list) are updated to reflect the new example. Occasionally, the
agent needs to spin off new schemas from existing ones so as to be able
to represent conflicting or unreliable results. The agent i1s able to detect
that more conditions need to be taken into account in a schema/module
for certain results to become more reliable, which will force it to create
versions of the module that have longer, slightly different conditions.

. Exploration Strategy.

The exploration strategy used in these architectures varies. Drescher’s sys-
tem, while demonstrating sophisticated learning, has an extremely simple
exploration strategy, namely a random one. His agent basically does not
do anything else but learn by performing random experiments. Foner
[19] discusses how Drescher’s agent can be made to learn much faster and
to learn more relevant knowledge by adopting a smarter experimentation
strategy as well as a focus of attention mechanism. In Maes’ architecture
[38], the exploration strategy is also more goal-oriented: the agent biases
its experimentation towards actions that show promise to contribute to
the goals. In the same system, the amount of exploration versus exploita-
tion is an emergent property of the action selection system (the more has
been learned, the fewer experiments are performed).

One of the main advantages of model learners is that they can transfer

behavior learned in one context to another context (e.g. another goal). Since
the system builds up a model of how taking an action in a situation results
in another situation, it can use this model as a road map for any particular
set of goals. As such they do better in environments where goals (or relative
importances of goals) may change over time. This also implies that they do not
just learn at the fringe of the state space connected to the goals. They learn
from every action, as opposed to only learning from actions that have proven
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to be directly related to the present goals. In addition, they make it much
easier for the designer of an agent to incorporate background knowledge about
the domain (e.g. in the form of a causal model of the effects of actions). The
agent is still able to correct this knowledge if it proves to be incorrect. The
disadvantage of this type of architecture i1s that they may take more time to
select an action, because there is no direct mapping of situations to “optimal”
actions.

6.2.3 Open Problems

As i1s the case with action selection models, a lot of problems with modeling
learning from experience remain unsolved. The following problems apply to all
three of the above mentioned learning approaches:

e Scaling to larger (more realistic) problems is typically a problem for any
of these learning algorithms. The computational complexity of all of the
learning systems discussed is too big to be practically useful to build com-
plex agents that solve real problems.

e One reason this is the case is that very few algorithms have incorporated
interesting attention mechanisms. For example, Foner [19] demonstrates
that incorporating attention mechanisms such as spatial locality can im-
prove the tractability of learning from experience in a significant way.
Most algorithms discussed above only use the temporal locality heuristic,
1.e. effects are assumed to be perceived soon after the actions that caused
them.

e Most of the algorithms proposed are bad at generalizing over sensor data.
First, the sensor data are only represented at one level of granularity, as
opposed to more coarse and finer levels. Second, none of the algorithms
proposed exploit the structure and similarity present in many sensor data
(e.g. one could exploit the fact that different cells of a retina are adjacent
or that the different cells of the retina are affected in similar ways by
certain actions).

e More work can be done in the domain of exploration strategies. Most
existing algorithms employ the most simple strategy possible: the agent
experiments a certain percentage of its time, no matter how urgent its
needs or motivations may be, no matter how interesting the opportunities
are that present themselves, etc. The agent also picks the experiment to
perform in a random way, as opposed to using certain heuristics such as
(i) trying actions that have not been tried for a while, (ii) trying actions
that have shown promise recently, etc.

e There is a lack of interesting models of how learning and perception in-
teract. The model of perception present in most architectures is narrow-
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minded. The set of sensor data that the agent tries to correlate with its
actions is taken as a given. The system does not couple learning about
actions with learning about perception. It does not learn what to pay at-
tention to or learn that more features should be paid attention to. Ideally,
an agent would create new features and categories to perceive the envi-
ronment based on whatever categories its goals and environment require
(e.g. kittens that grow up in an environment with only vertical edges, do
not develop detectors for horizontal edges).

e There is a lack of sophisticated models of how action selection and learning
interact. In particular, all current algorithms assume that the set of prim-
itive actions the agent learns about is a given. As is the case with sensor
data, it would make more sense if the set of primitive actions is learned
on the basis of what discretization or what subdivision of the continuous
space of possible actions is appropriate for the environment and the goals
at hand.

e We need to understand better what the role of learning is and how it inter-
acts with other adaptive phenomena like cultural learning and adaptation
through evolution (see [6]). We need to better understand what “building
blocks” evolution could provide that could facilitate learning (e.g. provide
a built-in bias for learning, or built-in specialized structures, etc).

e Finally, most of the approaches taken have been inspired by behaviorism
and comparative psychology, rather than ethology. A lot could be learned
by taking a more ethologically inspired approach to learning. For example,
ethologists have shown that animals have built-in sensitive periods for
learning particular competences. These periods tend to coincide with the
situations in their lives that are optimal for picking up the competence to
be learned, and as such reduce the complexity of the learning task.

7 Conclusions

Autonomous agent research represents an exciting new approach to the study
of intelligence. So far, this new approach has demonstrated several “proofs of
concept”. In particular, encouraging successes have been reported in the area
of mobile robots as well as software agents. Several prototypes have been built
that have solved a real task that was previously not solvable or that was only
solvable by means of a more costly and less effective solution. The approach
has definitely had an impact on the course of artificial intelligence, which can
be witnessed by the explosion of publications and research projects in the area.

Nevertheless, some problems are apparent that require novel ideas and better
solutions. The main problem identified is that of scaling the approach to larger,
more complicated systems. The tools and techniques proposed do not provide
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sufficient support to design or hand-build a complex agent with many different
goals. The learning techniques proposed have computational complexities that
make the automated development of an adaptive agent an intractable problem
(in realistic time).

In addition, in order for the approach to be more founded, more fundamental
research has to be undertaken. We need to understand the classes of problems
agents have to deal with, so that it becomes possible to critically compare partic-
ular architectures and proposals. For example, many different models of action
selection have been proposed, but unless we understand the problem of action
selection better, we do not have any grounds to compare the different proposals.

Aside from better evaluation criteria, we need a better understanding of the
underlying principles. In particular, it is important to understand the mecha-
nisms and limitations of emergent behavior. How can a globally desired struc-
ture or functionality be designed on the basis of interactions between many
simple modules? What are the conditions and limitations under which the
emergent structure is stable, and so on. Some first steps towards a theory of
emergent functionality have been proposed, using tools from complex dynamics
[58] [28] [5]. However, so far the proposed theories have only been applicable to
very simple toy examples.

There is tension inherent in the agent approach that i1s as of now unresolved.
Research in autonomous agents has adopted very task-driven, pragmatic solu-
tions. As a result, the agents built using this approach end up looking more
like “a bag of hacks and tricks”, than an embodiment of a set of more general
laws and principles. Does this mean that the field will evolve into a (systems)
engineering discipline, or will we find a path towards becoming a more scientific
discipline?
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