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Abstract

The Center for Electronic Commerce (CEC) embodies over fourteen years of
experience in applying agents to industrial problems. We have found such a fit in
three areas: coordination of industrial designers, simulation and modeling of complex
products and processes, and scheduling and control of production systems. This
presentation outlines several trends in modern manufacturing, describes how these
trends affect the three problem areas, discusses the features of agents that make them
attractive candidates for implementing such systems, and reviews example
applications from CEC’s portfolio in each of these areas.

1. Trends in Manufacturing
Three trends in modern manufacturing present challenges that agent technologies

can address. Manufactured products and the systems that produce them have become
more complex. The manufacturing process is increasingly spread out over a supply
network rather than being concentrated in a single firm, and the variety of products
that a firm must offer is increasing while the time to bring them to market is
decreasing.

1.1 Increased Product Complexity
A comparison of the features available in a modern automobile with those in a

Model T illustrates how the functionality of products has increased. A modern vehicle
may include air conditioning, automatic transmission, power steering, power brakes,
roll-up windows, turn signals, cruise control, seat belts, air bags, radio and tape
player, adjustable seats, and a host of other features that did not exist or could not be
installed in an automobile earlier in this century. Similar technical enhancements have
enriched many other products, including appliances, machine tools, and aircraft.

1.2 Supply Networks
Modern industrial strategists are developing the vision of the “virtual enterprise,”

formed for a particular market opportunity from a collection of independent firms
with well-defined core competencies [13]. The manufacturer of a complex product
(the original equipment manufacturer, or “OEM”) may purchase half or even more of
the content in the product from other companies. For example, an automotive
manufacturer might buy seats from one company, brake systems from another, air
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conditioning from a third, and electrical systems from a fourth, and manufacture only
the chassis, body, and powertrain in its own facilities. The suppliers of major
subsystems (such as seats) in turn purchase much of their content from still other
companies. As a result, the “production line” that turns raw materials into a vehicle is
a “supply network” (more commonly though less precisely called a “supply chain”) of
many different firms.

Figure 1 illustrates a simple supply network [1, 7]. Johnson Controls supplies
seating systems to Ford, General Motors, and Chrysler, and purchases the components
and subassemblies of seats either directly or indirectly from at least twelve smaller
companies, some of which also supply one another. Issues of product design and
production schedule must be managed across all of these firms in order to produce
quality vehicles on time and at reasonable cost.
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Figure 1: A Simple Automotive Supply Network

1.3 Increased Product Variety over Time
In manufacturing, the product that pleases the most customers has a tremendous

advantage, and one of the most effective means known to determine what product
features customer like is to turn out as many different product variations as quickly as
possible. Customers tend to favor a company offering many product variations,
because they can choose the model most closely meeting their desires. In addition, if a
company can bring new products to market quickly, it can shift its offerings to reflect
customer preferences and thus capture even more of the market. This strategy is
responsible for the precipitous drop in the time-to-market for many products. The
time from product concept to first production in automotive used to be 60 months.
Now world-class performance requires 30 months, and some vehicles have been
produced in even less time.

From an AI perspective, a product represents a particular point in the space of
product characteristics, and its market performance measures the desirability of that
point to customers. The more variations a company can offer and the faster it can
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bring them to market, the more thoroughly it can sample the space of customer
demand, and the more satisfaction it can deliver to its customers.

2. What Needs to be Done in Industry?
Industry creates wealth and enriches people’s lives by conceiving new products

and services and bringing them from vision to reality. In manufacturing, two essential
steps in this process are design (working out the details of the product and the systems
needed to manufacture it) and operation (of the manufacturing system that produces
the product). Increasingly, simulation and modeling tools support the design process.
The CEC’s experience in applying agents to industry focuses in these three areas.

2.1 Design
Manufactured products do not just happen. They and the systems that make them

must be designed, planned out in great detail to guide the expenditures of capital and
effort necessary to realize them.

The movement toward supply chains means that each supplier shares in the design
of the overall product by helping design the subsystems it supplies. In addition to
product design, much of the design of the production system is routinely assigned to
vendors of production equipment or third party “system integrators” responsible for
assembling this equipment into a working factory. This strategy poses difficulties of
communication and coordination. Design is difficult enough when the participants
come from different technical disciplines. When they belong to different companies,
they often have divergent corporate cultures and proprietary needs to keep certain
information confidential, and information movement between designers can be much
slower than between members of a single company. As a result, the cost of design can
easily increase, while the coherence of the overall design suffers. Three challenges,
difficult enough when design is done by a single-firm, become daunting in the
distributed environment of a modern supply chain.

Planning.  Design tasks cannot be sequenced in detail. Because of the complex
dependencies among components and subsystems, early decisions often have to be
changed in the light of later ones. Such backtracking is much easier for closely-linked
designers in a single firm than for a widely distributed team.

Coupling.  Designers think locally, focusing on their own subsystems, but the
complexities of the product couple them with other designers. This challenge and the
previous one can lead to infinite loops: designer A’s decision on one feature leads to a
decision by designer B that invalidates designer A’s decision on another feature, but
when designer A revises this feature, it invalidates B’s earlier decision, and so forth.
Distributing the designers across multiple firms only increases the time lag in such
loops and makes their resolution more difficult.

Prioritizing.  Designers have no common language for comparing the importance
of issues. For instance, every subsystem in a vehicle contributes mass to the overall
vehicle, and if one weighs more, others must weigh less to keep the entire vehicle in a
reasonable range. However, the decision of which components can have more mass
and which must make do with less is typically resolved politically, on the basis of
whose supervisor is more powerful. In a supply network, this dynamic requires the
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OEM to adjudicate conflicts between the suppliers, forcing the OEM to make design
decisions about purchased subsystems that it would rather defer to its suppliers.

2.2 Simulation and Modeling
A design for an industrial system or manufactured product is a plan, and like other

plans, it can sometimes fail. The modern manufacturing trends discussed above make
failure both more likely and more costly than in earlier days. Thus it is increasingly
important to test the design before incurring the expense of implementation.

The increased complexity of modern products raises the risk of design failure
through the possibility of unanticipated interactions among subsystems and
components. Pressures toward distributed manufacturing and design result in a more
heterogeneous product. Shorter product life cycles leave less time for design. All of
these issues raise the risk that the physical product or system will not satisfy the
expectations of the design. The increased scope of the venture also raises the
investment necessary to bring the product to fulfillment. An automotive manufacturer
must spend between $1*109 and $3*109 to bring a new vehicle to market, an
investment that can be compromised at many points by design failure.

The increased risk and cost of manufactured products is leading to increased use
of simulation and modeling technology to assess the performance of a design before
its physical implementation. Product simulation (for example, to determine the crash-
worthiness of a vehicle) usually relies heavily on finite element analysis, while
process simulation (such as establishing the capacity of a production line or the
behavior of an inventory system) depends traditionally on stock-and-flow models
such as queueing systems or differential equations.

A number of requirements constrain the value of a simulation and modeling
environment. A simulation is easier to develop and use if the modeling formalism
maps naturally onto the problem domain both structurally (so that model elements
correspond to domain entities) and semantically (so that the model language covers
the ontology of the domain). The more accurately the model predicts the behavior of
the real world, the more risk it will remove from the development process and thus
the more value it contributes to the enterprise. The model is not an end in itself, but a
step in a larger life cycle that begins with design and moves on to operation of the
resulting product, and a model that can support operation will be more valuable than
one that serves only the modeling activity.

2.3 Scheduling and Control
Design and simulation can be applied both to the consumer product being

manufactured and to the tools and system that will manufacture it. Scheduling and
control apply mostly to the manufacturing system. They monitor its trajectory through
state space over time and adjust operating parameters to make that trajectory satisfy
some overall criterion.

Scheduling and control differ in their characteristic time constants and the kind of
information manipulated [19]. Scheduling is longer-term, usually on a scale to which
humans can respond, and involves the manipulation of concepts through
semantically-grounded symbols. Control manipulates scalar- and vector-valued
physical variables, and usually happens too fast for direct human supervision.



Parunak, “What can Agents do in Industry, and Why?”

Page 5

In manufacturing, scheduling ranges from long-range plans that support delivery
promises to customers, to shop-floor scheduling that determines what happens when
at which resources on the factory floor. The objective is to produce the most product
possible with the lowest capital investment, while satisfying customer requirements
for quality and delivery time. Control deals with turning devices on and off to execute
the processes that transform input materials into a finished product.

Increasing product variety challenges both scheduling and control. Scheduling is
essentially a search through a combinatorially complex space (roughly, the Cartesian
product of the set of parts being manipulated, the set of resources that manipulate
them, and the time line). The more products or product variations one manufactures,
the larger this space, and the more difficult the scheduling problem. Increased product
variation also makes control more difficult, since it increases both the number of
devices that must be coordinated and the range of behaviors that those devices must
support.

Scheduling is also aggravated by the shift toward supply networks. By passing
manufacturing of critical components to suppliers, an OEM relinquishes direct control
on when they are produced, and thus increases the uncertainty in the timing of the
processes by which it integrates these components into the overall product.

Traditionally, both control and scheduling are done with centralized processes.
The combinatorial explosion of scheduling possibilities taxes the ability of a
centralized program to compute an optimal schedule. The constant change of product
mix needed to respond to customer orders against an increasingly varied set of
product offerings means that the factory may never even reach a steady state in which
an optimal schedule is well defined. The increased distribution that product
complexity brings to control and that supply networks bring to scheduling makes
centralization awkward. For both scheduling and control, increased product
complexity and supply networks greatly increase the size and complexity of
traditional monolithic systems, increasing the cost of software engineering and
maintaintenance.

3. What Can Agents Do?
Agents are not a panacea for industrial software. Like any other technology, they

have certain capabilities, and are best used for problems whose characteristics require
those capabilities. Five such characteristics are particularly salient: agents are best
suited for applications that are modular, decentralized, changeable, ill-structured, and
complex.1 The tasks of design, simulation, and scheduling and control manifest many
of these characteristics, particularly under the impact of modern manufacturing
trends, suggesting that agents are a natural way to address them.

3.1 Modular
Agents are pro-active objects, and share the benefits of modularity that have led to

the widespread adoption of object technology. They are best suited to applications
that fall into natural modules. An agent has its own set of state variables, distinct from
those of the environment. The agent’s input and output mechanisms couple its state

                                                       
1 These are an extension of the categories described by [8].
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variables to some subset of the environment's state variables. An industrial entity is a
good candidate for agent-hood if it has a well-defined set of state variables that are
distinct from those of its environment, and if its interfaces with that environment can
be clearly identified.

All three of the modern manufacturing trends we are discussing lend themselves
to modular analysis. Engineers manage increased product complexity by refining the
overall product into subsystems with well defined interfaces. Supply networks assign
these subsystems and components to different companies, each with its own
organizational identity, operational boundaries, and procedures for interfacing with its
environment. The proliferation of product varieties leads to the definition of a product
as a base platform and a set of modular options.

3.2 Decentralized
An agent is more than an object; it is a pro-active object, a bounded process. It

does not need to be invoked externally, but autonomously monitors its own
environment and takes action as it deems appropriate. This characteristic of agents
makes them particularly suited for applications that can be decomposed into stand-
alone processes, each capable of doing useful things without continuous direction by
some other process.

Many industrial processes can be organized in either a centralized or a
decentralized way. Centralized organizations go back to the governments of ancient
Egypt, Assyria, China, and Babylon, with their focus on a central demigod and an
elaborate bureaucracy to manage the flow of control down and information back up.
The popularity of this structure can be traced through the army of Alexander the
Great, the Roman legions, and the rival empires of pre-modern Europe down to the
structure of modern Fortune 500 companies and industrial control architectures [2].

This approach is not the only alternative. The power of decentralization has been
made clear in recent years in the contrast in performance between a centralized
economic system (the former Soviet Union) and a decentralized one (free-market
capitalism). Supply networks are an expression of the decentralized approach, and
agent-based architectures are an ideal fit to such an organizational strategy. In fact, a
European observer suggests that one of the forces leading to the growing popularity
of multi-agent systems is “the rise of the American style of liberalism and
individualism” [26]. In addition, the increase in product variation leads to a
proliferation of manufacturing devices across increasingly larger factories, so that
even within a single company problems of control and scheduling may be more
naturally considered from a decentralized point of view.

3.3 Changeable
Agents are well suited to modular problems because they are objects. They are

well suited to decentralized problems because they are pro-active objects. These two
characteristics combine to make them especially valuable when a problem is likely to
change frequently. Modularity permits the system to be modified one piece at a time.
Decentralization minimizes the impact that changing one module has on the behavior
of other modules.
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Modularization alone is not sufficient to permit frequent changes. In a system with
a single thread of control, changes to a single module can cause later modules, those it
invokes, to malfunction. Decentralization decouples the individual modules from one
another, so that errors in one module impact only those modules that interact with it,
leaving the rest of the system unaffected.

The modern trend toward increased product variety and shorter time to market
makes the manufacturing environment much more changeable than it was previously.
Much of the cost of a new factory is in its software. Agent-based architectures permit
reuse of much existing code and self-configuration of large portions of the system,
reducing both the cost and the time needed to bring up a new factory.

3.4 Ill-structured
An early deliverable in traditional systems design is an architecture of the

application, showing which entities interact with which other entities and specifying
the interfaces among them. For example, installation of a conventional system for
electronic data interchange (EDI) among trading partners requires that one know the
providers and consumers of the various goods and services being traded, so that
orders can be sent to the appropriate parties.

Such a structure could be defined in advance in the days when a company made
most of each product itself and dealt only with its own internal divisions and selected
suppliers. The structure of modern supply networks can be dynamic, changing many
times over the lifetime of an information system. Consider an electronic system to
support open trading, where orders are open to any qualified bidder. Requiring the
system designer to specify the sender and recipient of each transaction would quickly
lead to “paralysis by analysis.” From a traditional point of view, this application is ill-
structured. That is, not all of the necessary structural information is available when
the system is designed. Agents can discover this structure as the system operates,
rather than requiring it to be designed into the system initially.

Some applications are intrinsically under-specified and thus ill-structured, and
agents offer the only realistic approach to managing them. Even where more detailed
structural information is available, the wiser course may be to pretend that it is not. A
system that is designed to a specific domain structure will require modification if that
structure changes. Agent technology permits the analyst to design a system to the
classes that generate a given domain structure rather than to that structure itself, thus
extending the useful life of the resulting system and reducing the cost of maintenance
and reconfiguration.

3.5 Complex
All three of the modern manufacturing tendencies that we have identified increase

the complexity of the manufacturing problem. Increased product complexity explodes
the size of the space that designers must search and the number of machines that must
be scheduled and controlled, and makes the task of mapping between design and
simulation model more daunting. Supply networks and increased product variability
push traditional optimal scheduling against the wall of computational complexity.

As is often the case, the complexity in this example is combinatorial in nature,
resulting from the fact that the number of different interactions among a set of
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elements increases much faster than does the number of elements in the set. By
mapping individual agents to the interacting elements, agent architectures can replace
explicit coding of this large set of interactions with generation of them at run-time.
Consider 100 agents, each with ten behaviors, each behavior requiring 20 lines of
code. The total amount of software that has to be produced to instantiate this system is
20,000 lines of code, an extremely modest undertaking. But the total number of
behaviors in the repertoire of the resulting system is on the order of ten for the first
agent, times ten for the second, times ten for the third, and so forth, or 10100, an
overwhelmingly large number. Naturally, not all of these will be useful behaviors,
and one can imagine pathological agent designs in which none of the generated
behaviors will be appropriate. However, appropriately designed agent architectures
can move the generation of combinatorial behavior spaces from design-time to run-
time, drastically reducing the amount of software that must be generated and thus the
cost of the system to be constructed.

Just as well-structured systems can become ill-structured when viewed over their
entire life span, so a system that appears to require only a few behaviors can become
more complex as it is modified in response to changing user requirements. By
adopting an agent approach at the outset, systems engineers can provide a much more
robust and adaptable solution that will grow naturally to meet business needs.

4. What has the CEC done with Agents in Industry?
The Center for Electronic Commerce has been active in applying agents to

industrial problems since the early 1980’s. These applications cover all three of the
tasks described above, and illustrate many of the benefits of agents in industry.

4.1 Design
The CEC’s major initiative in applying agents to design is in the context of

RAPPID (Responsible Agents for Product-Process Integrated Design) 2 [22-24].
A designer seeks to embed a set of functions (e.g., optical, electromechanical,

control) in an artifact with specified characteristics (e.g., weight, color, complexity,
materials, power consumption, physical size). The functional view drives most
designs, since it distinguishes the disciplines in which engineers are trained and in
support of which design tools are available. Conflicts arise when different teams
disagree on the relation between the characteristics of their own functional pieces and
the characteristics of the entire product. Some conflicts are within the design team:
How much of a mechanism's power budget should be available to the sensor circuitry,

                                                       
2 RAPPID was sponsored by the Rapid Design Exploration and Optimization
(RaDEO) program (formerly MADE) of DARPA, managed successively by Pradeep
Khosla and Kevin Lyons, and administered through the AF ManTech program at
Wright Laboratories under the direction of James Poindexter. The project team
includes Steve Clark, Mike Davis, Mitch Fleischer, Bob Matthews, Van Parunak, and
John Sauter (all ITI), Al Ward and Tzyy-Chuh Chang (Ward Synthesis), and Mike
Wellman (University of Michigan). The RAPPID prototype is being tested on the
design of  military land vehicles at the U.S. Army’s Tank and Automotive Command
(TACOM) in Warren, MI, with the support of the Technology Integration Division.
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and how much to the actuator? Others face design off against other manufacturing
functions: How should we balance the functional desirability of an unusual machined
shape against the increased manufacturing expense of creating that shape?

It is easy to represent how much a mechanism weighs or how much power it
consumes, but there is seldom a disciplined way to trade off weight and power
consumption against one another. The more characteristics are involved in a design
compromise, the more difficult the trade-off becomes. The problem is the classic
dilemma of multivariate optimization. Analytical solutions are available only in
specialized and limited niches. In current practice such trade-offs are sometimes
supported by processes such as QFD (Quality Functional Deployment) or resolved
politically, rather than in a way that optimizes the overall design and its
manufacturability. The problem is compounded when design teams are distributed
across different companies.

RAPPID uses a marketplace to set prices on each characteristic of a design.
Agents representing each component buy and sell units of these characteristics. A
component that needs more latitude in a given characteristic (say, more weight) can
purchase increments of that characteristic from another component, but may need to
sell another characteristic to raise resources for this purchase. In some cases,
analytical models of the dependencies between characteristics may help designers
estimate their relative costs, but even where such models are clumsy or nonexistent,
prices set in the marketplace define the coupling among characteristics.

Figure 2 shows a design decomposed into Component Agents (rounded
rectangles), each with one Characteristic Agent (ovals) for each dimension in the
design space. For example, the "SS.Weight" Characteristic might represent the
constraint that the entire product weigh between 5 and 10 kg. The topmost
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Figure 2: The RAPPID Design Ecosystem for a New Tank Suspension
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Component represents the complete product (in this case, a new suspension for a
tank), and is the concern of the Chief Engineer, who reflects the Customer's
requirements in the initial allocation of design space. The bottom-most Components
are either custom-manufactured or (in the Figure) selected from an on-line Parts
Catalog. Designers, who typically have responsibility for intermediate levels of the
product tree, propagate the constraints from the top and bottom of the tree toward
each other. Each Component (either automatically or under guidance from its
Designer) buys and sells allocations on its Characteristics to and from other
Components.

RAPPID rests on three basic concepts: markets as a mechanism for coordinating
distributed decision-making, set-based design, and the use of computer agents in
partnership with human agents rather than as a replacement for them.

Market-Based Control.—Researchers addressing distributed problems in a wide
range of domains have recently begun to turn to market-based mechanisms for
coordination. [3] offers a convenient collection of applications to fields as diverse as
computer network control, memory allocation, factory scheduling, pollution
management, and air-conditioning load balancing. In all of these areas, competitors
for scarce resources can efficiently express their needs in terms of a common
currency, and the balance between supply and demand can set prices for those
resources that rationalize the distribution of resources across competitors.

Set-Based Ideas.—A product's characteristics can be thought of as dimensions of
a Cartesian space within which the product is defined. Traditionally, designers seek to
build a design to fit a predefined subspace of characteristics, without knowing in
advance whether any acceptable design fits. Toyota has pioneered a more promising
vision that begins with a design space much larger than necessary, and then shrinks it
incrementally to discover the subspace occupied by the desired design [29].

Current design tools do not support this vision. With a market in design
characteristics, low prices identify slack characteristics (dimensions of the space) that
the chief engineer can collapse by buying up allocations of that characteristic. This
action simultaneously reduces the amount of that characteristic available for use by
designers and increases the funds in the system available to purchase other
characteristics to compensate for the decrease in the given characteristic. As designers
buy and sell, the relative prices of the various characteristics change, identifying a
new slack dimension that can further shrink the design space.

Silicon and Carbon Agents.—RAPPID does not automate the entire design
problem. Its market mechanisms function alongside conventional interactions, which
we describe as SLOWH (Standard Legacy-Oriented Work Habits). The market
mechanisms themselves are not entirely automated, but are implemented partly in
computer algorithms and partly in human behaviors, a mixture that we describe as
“hybrid carbon-silicon systems.”

4.2 Simulation
The CEC’s research in agent-based simulation and modeling includes the

development of XSpec (a modeling tool specifically equipped for industrial controls)
and the DASCh project (applying the SWARM modeling environment [11] to
industrial supply networks).
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4.2.1 XSpec
XSpec (“eXecutable Specification”)3 [28] is a simulation environment designed

specifically for modeling industrial control systems. It develops three techniques that
are critical for success in this domain: pairing of physical and control models, the use
of wrappers to integrate existing applications, and a technique for synchronizing time
across such integrated applications.

Pairing of Physical and Control Models.—Design of a manufacturing
mechanism typically requires close coordination between a mechanical engineer who
designs the physical components and an electrical engineer who designs the control
algorithms that manipulate it. Conventionally, these distinct aspects are often
developed in isolation from one another, using separate engineering tools, and then
brought together in an integration task when inevitable inconsistencies are discovered.
XSpec promotes the integrated development of physical and control models with a
class of agents, “components.” Each component includes both physical and control
models and the interfaces between them for a specific element of the system, and
defines the interfaces that this combined model presents to other components. These
external interfaces include not only control signals but also physical interactions. The
discipline of defining both physical and control sides of each component before tying
these components together into a system forces engineers to work closely together,
resolving inconsistencies at the level of an individual device rather than after devices
have been elaborated into two complete but incompatible systems.

Wrapping of Existing Applications.—Integrating physical and control models
device-by-device runs contrary to the grain of existing modeling tools, which focus
either on the physical behavior of the system (e.g., a kinematic modeler such as
Robcad) or on its control behavior (e.g., a DEDS modeler such as Flexis). Because
these tools divide the world by discipline (mechanics vs. control) rather than by
device, they discourage engineers from the close integration of disciplines on a
device-by-device basis. To overcome this pressure, XSpec enables individual tools to
be wrapped so that they can automatically exchange their results with one another,
much along the lines of ARCHON [4, 9, 25]. In the applications we have modeled,
we use XSpec to integrate Robcad (for the kinematic behavior of individual
mechanisms), SIMAN/Cinema (for queueing behavior) and Flexis (for control
algorithms).

Synchronizing Time.—A major challenge in integrating different models of real-
time behavior is maintaining a common view of time across the various applications.
The XSpec wrapper for modeling packages includes a special synchronization
protocol and a time server, or “Syncer.” These mechanisms coordinate the temporal
execution of models constructed in different tools so that their integrated behavior is
causally meaningful and useful as an overall model of the system [10]. The Syncer
supports the integration of different time models, including discrete events,
continuous time, and the special case of zero time between two events on different
tools.

The power of XSpec was demonstrated in its application to a gear weld cell for a
major automotive manufacturer. The cell, designed and constructed with conventional

                                                       
3 The XSpec team includes Mark Brown, John Sauter, Ray VanderBok, and Jack
White of ITI, and Bob Judd of the University of Ohio.
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technologies, was only producing 75% of its rated capacity. The XSpec team modeled
the line, and then tested various modifications on the model without the constraint of
working around daily production use of the cell. When the modifications
recommended by the model were installed in the cell, its production rose to 125% of
its rated capacity.

4.2.2 DASCh
Supply networks, like most systems composed of interacting components, support

a wide range of dynamical behavior that can interfere with scheduling and control at
the enterprise level. Data analytic approaches are not effective in understanding these
dynamics, because the commercial environment changes too rapidly to permit the
collection of consistent data series long enough to support statistical requirements.
The DASCh project (Dynamical Analysis of Supply Chains)4 [16, 17] explores the
dynamical behavior of takes the approach of constructing and experimenting with an
agent-based emulation model of the system that can maintain a given set of conditions
as long as desired.

Following the pioneering work of Jay Forrester and the Systems Dynamics
movement [6], virtually all simulation work to date models the supply chain as a set
of partial differential equations and then integrates these equations over time. DASCh
uses agent-based emulation, representing the various components of the supply chain
by software agents that emulate their actual behaviors. The DASCh approach is more
faithful than numerical simulation, better supports the increasingly decentralized
nature of supply chains and the need to protect proprietary information, and provides
a much closer interaction between model and real system [17].

DASCh includes three species of agents. Company agents represent the different
firms that trade with one another in a supply network. They consume inputs from
their suppliers and transform them into outputs that they send to their customers.
PPIC agents model the production planning and inventory control algorithms used by
company agents, and currently support a simple MRP model. Shipping agents model
the delay and uncertainty involved in the movement of both material and information
between trading partners.

The initial DASCh experiments involve a supply chain with four company agents
(a boundary supplier, a boundary consumer, and two intermediate firms producing a
product with neither assembly nor disassembly), illustrated in Figure 3. The two
intermediate company agents each have PPIC agents to convert incoming orders to
orders for their inputs, and shipping agents manage all movement of both material and
information among company agents.

This simple structure was intended as a starting point. It was expected to yield
relatively uninteresting behavior, on which the impact of successive modifications
could be studied. In fact, it shows a range of interesting behaviors in terms of the
variability in orders and inventories at the various company agents.

                                                       
4 DASCh was funded by DARPA, and administered through the AF ManTech
program at Wright Laboratories under the direction of James Poindexter. The DASCh
team includes Steve Clark and Van Parunak of ITI, and Prof. Bob Savit and Rick
Riolo of the University of Michigan’s Program for the Study of Complex Systems.
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• As the demand generated by the top-level consumer propagates to lower
levels, its variance increases, so that lower-level suppliers experience much more
variability than higher-level ones. This phenomenon is widely discussed in the
literature.
• Not as well recognized is the correlation imposed on an originally
uncorrelated series of random orders by the PPIC algorithms in the supply network.
• A single modest change at the top of the chain generates disturbances in the
order sequences of lower tier suppliers that persist long after the original change.
• Even when top-level demand is constant and bottom-level supply is
completely reliable, intermediate sites can generate complex oscillations in inventory
levels, including period doubling, as a result of capacity limitations.

The unexpectedly complex behavior of the DASCh model holds a lesson not only
for industrialists with supply chains but for researchers in multi-agent systems
generally. The interactions of agents with one another can generate complex
behaviors, even when the agents and their organization seem simple and
straightforward. This complex emergent behavior is both a challenge and a benefit. It
is a benefit because it means that complex problems can in principle be addressed
with sets of relatively simple agents, if their complex interactions can be harnessed. It
is a challenge because it requires agent engineers to pay close attention to system
behaviors as well as agent behaviors, rather than assuming that the whole will equal
the sum of the parts.

4.3 Scheduling and Control
Shop-floor scheduling and control is one of the more mature application areas for

agent technology, and CEC has executed several projects in this area. This summary
will highlight major lessons from each of these.

YAMS  (“Yet Another Manufacturing System”) [14] applied a contract net to a
hierarchical model of manufacturing system, including agents representing the overall
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PPIC1

PPIC2

Shipper 1

Shipper 2

Shipper 3

Product Flow

Information Flow

Mailer 1

Mailer 2

Mailer 3

Figure 3: The DASCh Supply Chain
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shop, each of several workstations in the shop, and each of several devices in each
workstation. The hierarchical model followed the widely-circulated NASREM
architecture promoted by the US National Institute for Standards and Technology [2].
Our experiments using this system to control an actual shop in our laboratory led to
two major conclusions. First, hierarchies are in general a poor way to organize agents.
While most physical interactions were between peers in the hierarchy, the use of a
rigidly hierarchical model forced messages to travel up to the lowest shared node and
then back down. The resulting flood of messages rapidly overwhelmed the
communication network. Second, messages can be physical as well as electronic. In
spite of careful analysis to prove that the protocols were deadlock-free, the system
deadlocked. Further analysis showed that the movement of a physical part from one
station to another, and the signal generated when it encountered a sensor at its
destination, provided a “message” from the sending station to the receiving station
that had not been included in the protocol analysis and that compromised the system’s
liveness.

CASCADE5 (not an acronym, although usually spelled with upper-case letters)
[20, 21] focused agent methods on the specific domain of material handling. Our
objective was to develop a distributed control mechanism for a Weldun-Bosch
modular conveyor system, so that configuring the control software could be as
straightforward as plugging together the physical components of the conveyor. We
began by modeling the protocols as a contract net between conveyor segments.
Because of the simple semantics involved (“Give me a pallet.” “Here, take a pallet.”),
we were able to streamline the ontology and protocol considerably, using
reinforcement learning in the individual segments to yield a self-routing system.
During our work, the work of the Parallel Distributed Processing group [12, 27] came
to our attention, and we noticed that our reduction of the contract net had led us to a
structure isomorphic to a back-propagation neural network. We articulated the
experience as the “marching-band syndrome,” in which agents of considerable
sophistication (such as the members of a marching band) sometimes achieve their
objectives best by adopting a greatly reduced interaction protocol based on the
requirements of the domain (in the case of the marching band, match one’s velocity
and separation to one’s neighbors, a mechanism successfully executed by flocks of
birds and schools of fish). CASCADE drew our attention to the power of fine-grained
agent solutions and led to our advocacy of synthetic ecosystems, agent architectures
that depend for their functionality on the emergent dynamics of interaction among
agents as well as the explicitly defined behaviors of individual agents.

SFA (Shop Floor Agents)6 [15] is a collaborative project in which several
industrial firms are sharing their experiences in constructing agent-based shop floor
systems. The project has highlighted the difference between a research environment
(in which every developer is an agent researcher, capable of devising new
architectural solutions in mid-stream to fit emerging challenges) and an industrial one

                                                       
5 YAMS and CASCADE were funded in part by the Kellogg Foundation. Participants
included Bruce Irish, Jim Kindrick, Peter Lozo, and Van Parunak.
6 Sponsored by the National Center for Manufacturing Sciences, directed by Tony
Haynes, and executed at ITI by Steve Clark, Mike Davis, Jorge Goic, Van Parunak,
and John Sauter.
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(in which developers are general software engineers without any deep knowledge of
agent theory). This experience shows that effective deployment of agents in industrial
settings requires the articulation of a teachable methodology for specifying and
designing multi-agent systems and the availability of development tools that package
best practice for implementation. The project’s deliverables address these needs with
extensions to standard object-oriented development methods and a sophisticated
implementation environment within the Gensym G2 system.

AARIA  (Autonomous Agents at Rock Island Arsenal)7 [18] developed an
architecture for manufacturing scheduling in which resources, processes, and parts are
peer agents. In most previous work on agent-based scheduling, resources (such as
machining workcenters) are agents, negotiating with one another for access to input
parts and the disposition of output parts. This architecture is acceptable in a classical
job shop in which parts compete for access to resources, but does not fit as well in
block-build environments such as airframe fabrication or ship drydocking, in which
the product is stationary and resources must compete for access to it. The basic idea
of a multi-species approach to agent-based scheduling and control emerged from a
conversation with Jean-Pierre Müller in Neuchâtel in September of 1992. The
resulting ecosystem (Figure 4) includes three main species: resources (including
machines, tools, and operators), part types, and unit processes (the basic production
steps into which manufacturing is divided [5]). The dynamic of this system can be
viewed as two flows, one of resources and one of parts, intersecting at the unit
process.

By maintaining the orthogonality of these three species, the framework can
support industries such as aerospace and shipbuilding that require integration of job-
shop and block-build environments. In addition, these flows support mechanisms that
permit different scheduling modalities to emerge dynamically at different resources as
the system runs. Conventional shops are scheduled either by dispatching based on
local equipment constraints, dispatching against an advance schedule, or Kanban
(response to a demand pull). These techniques can be distinguished on the basis of the

                                                       
7 Initial research on AARIA was funded by the DARPA Agile program under contract
F33615-95-C-5524, managed by USAF ManTech. The prime contractor is Intelligent
Automation, Inc. (Len Haynes, Kutluhan Erol, and Renato Levy). Other contractors
are the Industrial Technology Institute (Van Parunak, Steve Clark, Jorge Goic), the
University of Cincinnati (Albert Baker, Bradley Matthews, Ben Moore, Brian Birtle,
Veena Pandiri), Flavors Technology (Howell Mitchell), and Rock Island Army
Arsenal (Greg Peters, Don Tice).

Unit Process:
Assemble
Nut & Bolt

Resource:
Wrench

Resource:
Mechanic

Part: Nut

Part: Bolt

Part: 
Nut-on-Bolt

Figure 4: A Shop-Floor Ecosystem
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degree to which they are constrained by advance commitment and by customer
demand (Figure 5). Dispatch is the least constrained modality. Advance scheduling is
highly constrained by earlier promises, but unresponsive to changes in demand while
the system operates. Kanban requires both advance commitment and current demand.

In a conventional
shop, every workstation
is driven by the same
modality. In the three-
species ecosystem,
different portions of the
shop can behave
according to different
modalities, and can
change their modality
over time as conditions
change. The degree to
which a given unit
process is constrained by
demand is determined by
the behavior of part type

agents, while the degree of constraint by commitment is determined by the behavior
of resources. The result is a highly flexible architecture that is readily adaptable to a
wide range of manufacturing applications.

Growing out of this long experience, the CEC is currently a subcontractor in three
different industrial projects in the domain of manufacturing scheduling and control.
One applies agents to scheduling problems in the domain of semiconductor
manufacturing, another deals with scheduling in shipbuilding, and a third addresses
dynamic reconfiguration of the equipment in a manufacturing line in the event of
device failure. For proprietary reasons, details of these projects cannot be revealed at
this time.

5. Summary
Manufacturing is a rich domain for application of software technology. Modern

pressures toward increased product complexity and diversity and the use of supply
networks to produce these products produce problems characterized by modularity,
decentralization, changeability, poor structure, and high complexity, a set of
characteristics that agents are uniquely suited to address. These problems impact the
design of products and the systems that manufacture them, the simulation and
modeling of these systems, and their scheduling and control during operation. The
CEC’s extensive experience in applying agents to such problems confirms the
importance and appropriateness of agent technology in modern industrial
applications, and demonstrates that this technology is mature enough for wide-spread
deployment.
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