CHAPTER 5: REACTIVE AND HYBRID ARCHITECTURES

An Introduction to Multiagent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

0.1 Reactive Architectures

- There are many unsolved (some would say insoluble) problems associated with symbolic AI.
- These problems have led some researchers to question the viability of the whole paradigm, and to the development of *reactive* architectures.
- Although united by a belief that the assumptions underpinning mainstream AI are in some sense wrong, reactive agent researchers use many different techniques.
- In this presentation, we start by reviewing the work of one of the most vocal critics of mainstream AI: Rodney Brooks.

• He identifies two key ideas that have informed his research:

- 1. Situatedness and embodiment: 'Real' intelligence is situated in the world, not in disembodied systems such as theorem provers or expert systems.
- 2. Intelligence and emergence: 'Intelligent' behaviour arises as a result of an agent's interaction with its environment. Also, intelligence is 'in the eye of the beholder'; it is not an innate, isolated property.

- To illustrate his ideas, Brooks built some based on his subsumption architecture.
- A subsumption architecture is a hierarchy of task-accomplishing behaviours.
- Each behaviour is a rather simple rule-like structure.
- Each behaviour 'competes' with others to exercise control over the agent.
- Lower layers represent more primitive kinds of behaviour, (such as avoiding obstacles), and have precedence over layers further up the hierarchy.
- The resulting systems are, in terms of the amount of computation they do, *extremely* simple.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

An Introduction to Multiagent Systems

• Some of the robots do tasks that would be impressive if they were accomplished by symbolic AI systems.

 Steels' Mars explorer system, using the subsumption architecture, achieves near-optimal cooperative performance in simulated 'rock gathering on Mars' domain:

The objective is to explore a distant planet, and in particular, to collect sample of a precious rock. The location of the samples is not known in advance, but it is known that they tend to be clustered.

Chapter 5	An Introduction to Multiagent Systems	
 For individual (non-cooperative) agents, the lowest-level behavior, (and hence the behavior with the highest "priority") is obstacle avoidance: 		
 <i>if</i> detect an obstacle <i>the</i> Any samples carried by agents are mother-ship: 	en change direction. (1) dropped back at the	
<i>if</i> carrying samples <i>and</i> at the Agents carrying samples will return	base <i>then</i> drop samples (2) In to the mother-ship:	
if carrying samples and not at the	base <i>then</i> travel up gradient. (3)	

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

0.3 Situated Automata

- A sophisticated approach is that of Rosenschein and Kaelbling.
- In their situated automata paradigm, an agent is specified in a rule-like (declarative) language, and this specification is then compiled down to a digital machine, which satisfies the declarative specification.

This digital machine can operate in a provable time bound.

• Reasoning is done off line, at compile time, rather than online at run time.

Chapter 5	An Introduction to Multiagent Systems
 A key problem in such architectures is framework to embed the agent's subs interactions between the various layer 	s what kind control systems in, to manage the rs.
 Horizontal layering. Layers are each directly connected to action output. 	the sensory input and
In effect, each layer itself acts like an suggestions as to what action to perfo	agent, producing prm.
 Vertical layering. Sensory input and action output are e 	each dealt with by at most

Sensory input and action output are each dealt with by at most one layer each.


```
Chapter 5
                                                        An Introduction to Multiagent Systems
   • The reactive layer is implemented as a set of situation-action
     rules, à la subsumption architecture.
     Example:
     rule-1: kerb-avoidance
         if
            is-in-front(Kerb, Observer) and
            speed(Observer) > 0 and
            separation(Kerb, Observer) < KerbThreshHold</pre>
         then
            change-orientation(KerbAvoidanceAngle)
   • The planning layer constructs plans and selects actions to
     execute in order to achieve the agent's goals.
```

- The modelling layer contains symbolic representations of the 'cognitive state' of other entities in the agent's environment.
- The three layers communicate with each other and are embedded in a control framework, which use *control rules*.
 Example:

```
censor-rule-1:
    if
        entity(obstacle-6) in perception-buffer
        then
        remove-sensory-record(layer-R, entity(obstacle-6))
```