
CHAPTER 10: METHODOLOGIES

An Introduction to Multiagent Systems

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/



Chapter 10 An Introduction to Multiagent Systems

1 Pitfalls of Agent Development

� Lots of (single and multi-) agent projects . . . but agent-oriented
development recvd little attention.

� We now consider pragmatics of AO software projects.

� Identifies key pitfalls.

� Seven categories:

– political;
– management;
– conceptual;
– analysis and design;
– micro (agent) level;
– macro (society) level;
– implementation.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 1



Chapter 10 An Introduction to Multiagent Systems

1.1 You Oversell Agents

� Agents are not magic!

� If you can’t do it with ordinary software, you probably can’t do it
with agents.

� No evidence that any system developed using agent technology
could not have been built just as easily using non-agent
techniques.

� Agents may make it easier to solve certain classes of problems
. . . but they do not make the impossible possible.

� Agents are not AI by a back door.

� Don’t equate agents and AI.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 2



Chapter 10 An Introduction to Multiagent Systems

1.2 You Get Religious

� Agents have been used in a wide range of applications, but they
are not a universal solution.

� For many applications, conventional software paradigms (e.g.,
OO) are more appropriate.

� Given a problem for which an agent and a non-agent approach
appear equally good, prefer non-agent solution!

� In summary: danger of believing that agents are the right
solution to every problem.

� Other form of dogma: believing in your agent definition.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 3



Chapter 10 An Introduction to Multiagent Systems

1.3 Don’t Know Why You Want Agents

� Agents = new technology = lots of hype!

“Agents will generate US$2.6 billion in revenue by the year 2000”

� Managerial reaction:

“we can get 10% of that”.

� Managers often propose agent projects without having clear idea
about what “having agents” will buy them.

� No business plan for the project:

– pure research?

– technology vendor?

– solutions vendor?

– . . .

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 4



Chapter 10 An Introduction to Multiagent Systems
� Often, projects appear to be going well. (“We have agents!”) But

no vision about where to go with them.

� The lesson: understand your reasons for attempting an agent
development project, and what you expect to gain from it.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 5



Chapter 10 An Introduction to Multiagent Systems

1.4 Don’t Know What Agents Are Good For

� Having developed some agent technology, you search for an
application to use them.

� Putting the cart before the horse!

� Leads to mismatches/dissatisfaction

� The lesson: be sure you understand how and where your new
technology may be most usefully applied.

Do not attempt to apply it to arbitrary problems & resist
temptation to apply it to every problem.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 6



Chapter 10 An Introduction to Multiagent Systems

1.5 Generic Solutions to 1-Off Problems

� The “yet another agent testbed” syndrome.

� Devising an architecture or testbed that supposedly enables a
range agent systems to be built, when you really need a one-off
system.

� Re-use is difficult to attain unless development is undertaken for
a close knit range of problems with similar characteristics.

� General solutions are more difficult and more costly to develop,
often need tailoring to different applications.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 7



Chapter 10 An Introduction to Multiagent Systems

1.6 Confuse Prototypes with Systems

� Prototypes are easy (particularly with nice GUI builders!)

� Field tested production systems are hard.

� Process of scaling up from single-machine multi-threaded Java
app to multi-user system much harder than it appears.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 8



Chapter 10 An Introduction to Multiagent Systems

1.7 Believe Agents � Silver Bullet

� Holy grail of software engineering is a “silver bullet”: a order of
magnitude improvement in software development.

� Technologies promoted as the silver bullet:

– COBOL :-)
– automatic programming;
– expert systems;
– graphical programming;
– formal methods (!)

� Agent technology is not a silver bullet.

� Good reasons to believe that agents are useful way of tackling
some problems.

� But these arguments largely untested in practice.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 9



Chapter 10 An Introduction to Multiagent Systems
� Useful developments in software engineering: abstractions.

Agents are another abstraction.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 10



Chapter 10 An Introduction to Multiagent Systems

1.8 Confuse Buzzwords & Concepts

� The idea of an agent is extremely intuitive.

� Encourages developers to believe that they understand concepts
when they do not.

(The AI & party syndrome: everyone has an opinion. However
uninformed.)

� Good example: the belief-desire-intention (BDI) model.

– theory of human practical reasoning (Bratman et al);

– agent architectures (PRS, dMARS, . . . );

– serious applications (NASA, . . . );

– logic of practical reasoning (Rao & Georgeff).

� Label “BDI” now been applied to WWW pages/perl scripts.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 11



Chapter 10 An Introduction to Multiagent Systems
� “Our system is a BDI system” . . . implication that this is like being

a computer with 64MB memory: a quantifiable property, with
measurable associated benefits.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 12



Chapter 10 An Introduction to Multiagent Systems

1.9 Forget it’s Software

� Developing any agent system is essentially experimentation.

No tried and trusted techniques

� This encourages developers to forget they are developing
software!

� Project plans focus on the agenty bits.

� Mundane software engineering (requirements analysis,
specification, design, verification, testing) is forgotten.

� Result a foregone conclusion: project flounders, not because
agent problems, but because basic software engineering
ignored.

� Fequent justification: software engineering for agent systems is
none-existent.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 13



Chapter 10 An Introduction to Multiagent Systems
� But almost any principled software development technique is

better than none.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 14



Chapter 10 An Introduction to Multiagent Systems

Forget its distributed

� Distributed systems = one of the most complex classes of
computer system to design and implement.

� Multi-agent systems tend to be distributed!

� Problems of distribution do not go away, just because a system is
agent-based.

� Typical multi-agent system will be more complex than a typical
distributed system.

� Recognise distributed systems problems.

� Make use of DS expertise.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 15



Chapter 10 An Introduction to Multiagent Systems

1.10 Don’t Exploit Related Technology

� In any agent system, percentage of the system that is
agent-specific is comparatively small.

� The raising bread model of Winston.

� Therefore important that conventional technologies and
techniques are exploited wherever possible.

� Don’t reinvent the wheel. (Yet another communication
framework.)

� Exploitation of related technology:

– speeds up development;
– avoids re-inventing wheel;
– focusses effort on agent component.

� Example: CORBA.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 16



Chapter 10 An Introduction to Multiagent Systems

1.11 Don’t exploit concurrency

� Many ways of cutting up any problem.

Examples: decompose along functional, organisational, physical,
or resource related lines.

� One of the most obvious features of a poor multi-agent design is
that the amount of concurrent problem solving is comparatively
small or even in extreme cases non-existent.

� Serial processing in distributed system!

� Only ever a single thread of control: concurrency, one of the
most important potential advantages of multi-agent solutions not
exploited.

� If you don’t exploit concurrency, why have an agent solution?

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 17



Chapter 10 An Introduction to Multiagent Systems

1.12 Want Your Own Architecture

� Agent architectures: designs for building agents.

� Many agent architectures have been proposed over the years.

� Great temptation to imagine you need your own.

� Driving forces behind this belief:

– “not designed here” mindset;

– intellectual property.

� Problems:

– architecture development takes years;

– no clear payback.

� Recommendation: buy one, take one off the shelf, or do without.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 18



Chapter 10 An Introduction to Multiagent Systems

1.13 Think Your Architecture is Generic

� If you do develop an architecture, resist temptation to believe it is
generic.

� Leads one to apply an architecture to problem for which it is
patently unsuited.

� Different architectures good for different problems.

� Any architecture that is truly generic is by definition not an
architecture . . .

� If you have developed an architecture that has successfully been
applied to some particular problem, understand why it
succeeded with that particular problem.

� Only apply the architecture to problems with similar
characteristics.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 19



Chapter 10 An Introduction to Multiagent Systems

1.14 Use Too Much AI

� Temptation to focus on the agent specific aspects of the
application.

� Result: an agent framework too overburdened with experimental
AI techniques to be usable.

� Fuelled by “feature envy”, where one reads about agents that
have the ability to learn, plan, talk, sing, dance. . .

� Resist the temptation to believe such features are essential in
your agent system.

� The lesson: build agents with a minimum of AI; as success is
obtained with such systems, progressively evolve them into
richer systems.

� What Etzioni calls “useful first” strategy.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 20



Chapter 10 An Introduction to Multiagent Systems

1.15 Not Enough AI

� Don’t call your on-off switch an agent!

� Be realistic: it is becoming common to find everyday distributed
systems referred to as multi-agent systems.

� Another common example: referring to WWW pages that have
any behind the scenes processing as “agents”.

� Problems:

– lead to the term “agent” losing any meaning;

– raises expectations of software recipients

– leads to cynicism on the part of software developers

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 21



Chapter 10 An Introduction to Multiagent Systems

1.16 See agents everywhere

� “Pure” A-O system = everything is an agent!

Agents for addition, subtraction, . . .

� Naively viewing everything as an agent is inappropiate.

� Choose the right grain size.

� More than 10 agents = big system.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 22



Chapter 10 An Introduction to Multiagent Systems

1.17 Too Many Agents

� Agents don’t have to be complex to generate complex behaviour.

� Large number of agents:

– emergent functionality;

– chaotic behaviour.

� Lessons:

– keep interactions to a minimum;

– keep protocols simple;

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 23



Chapter 10 An Introduction to Multiagent Systems

1.18 Too few agents

� Some designers imagine a separate agent for every possible
task.

� Others don’t recognise value of a multi-agent approach at all.

� One “all powerful” agent.

� Result is like OO program with 1 class.

� Fails software engineering test of coherence.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 24



Chapter 10 An Introduction to Multiagent Systems

1.19 Implementing infrastructure

� There are no widely-used software platforms for developing
agent systems.

� Such platforms would provide all the basic infrastructure required
to create a multi-agent system.

� The result: everyone builds there own.

� By the time this is developed, project resources gone!

� No effort devoted to agent-specifics.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 25



Chapter 10 An Introduction to Multiagent Systems

1.20 System is anarchic

� Cannot simply bundle a group of agents together.

� Most agent systems require system-level engineering.

� For large systems, or for systems in which the society is
supposed to act with some commonality of purpose, this is
particularly true.

� Organisation structure (even in the form of formal communication
channels) is essential.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 26



Chapter 10 An Introduction to Multiagent Systems

1.21 Confuse simulated with real parallelism

� Every multi-agent system starts life on a single computer.
Agents are often implemented as UNIX processes, lightweight
processes in C, or JAVA threads.

� A tendency to assume that results obtained with simulated
distribution will immediately scale up to real distribution.

� A dangerous fallacy: distributed systems are an order of
magnitude more difficult to design, implement, test, debug, and
manage.

� Many practical problems in building distributed systems, from
mundane to research level.

� With simulated distribution, there is the possibility of centralised
control; in truly distributed systems, such centralised control is
not possible.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 27



Chapter 10 An Introduction to Multiagent Systems

1.22 The tabula rasa

� When building systems using new technology, often an
assumption that it is necessary to start from a “blank slate”.

� Often, most important components of a software system will be
legacy:

functionally essential, but technologically obsolete software
components, which cannot readily be rebuilt.

� Such systems often mission critical.

� When proposing a new software solution, essential to work with
such components

� They can be incorporated into an agent system by wrapping
them with an agent layer.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 28



Chapter 10 An Introduction to Multiagent Systems

1.23 Ignore de facto standards

� There are no established agent standards.

� Developers often believe they have no choice but to design and
build all agent-specific components from scratch.

� But here are some de facto standards.

� Examples:

– CORBA;

– HTML;

– KQML;

– FIPA.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 29



Chapter 10 An Introduction to Multiagent Systems

2 Mobile Agents

� Remote procedure calls (a) versus mobile agents (b):

client computer
server computer

client process
server process

network

(b)

client computer
server computer

client process
server process

network

(a)

agent

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 30



Chapter 10 An Introduction to Multiagent Systems
� Why mobile agents?

– low-bandwidth networks (hand-held PDAs, such as NEWTON);

– efficient use of network resources.

� There are many issues that need to be addressed when building
software tools that can support mobile agents. . .

– security for hosts and agents;

– heterogeneity of hosts;

– dynamic linking.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 31



Chapter 10 An Introduction to Multiagent Systems

Security for Hosts

We do not want to execute foreign programs on our machine, as
this would present enormous security risks:

� If the agent programming language supports pointers, then there
is the danger of agents corrupting the address space of the host

� many agent languages don’t have pointers!

� UNIX-like access rights on host;

� safe libraries for access to filestore, process space, etc;

� some actions (e.g., sending mail) are harmless in some
circumstances, but dangerous in others — how to tell?

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 32



Chapter 10 An Introduction to Multiagent Systems
� some agent languages (e.g., TELESCRIPT) provide limits on the

amount of e.g., memory & processor time that an agent can
access;

� secure co-processors are a solution — have a physically
separate processor on which the agent is run, such that the
processor is in ‘quarantine’ (‘padded cell’).

Some agent languages allow security properties of an agent to be
verified on receipt.
Hosts must handle crashed programs cleanly — what do you tell
an owner when their agent crashes?
Trusted agents?

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 33



Chapter 10 An Introduction to Multiagent Systems

Security for Agents

� Agents have a right to privacy!

� We often do not want to send out our programs, as to do so:
might enable the recipient to determine its purpose, and hence
our intent.

� The agent might be modified (sabotaged!) in some way, without
its owners knowledge or approval.

� An agent can be protected in transit by using conventional
encryption techniques (e.g., PGP).

� In order to ensure that an agent is not tampered with, it is
possible to use digital watermarks — rather like check digits.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 34



Chapter 10 An Introduction to Multiagent Systems

Heterogeneity of Hosts

� Unless we are happy for our agents to be executed on just one
type of machine (Mac, PC, SPARC, . . . ), then we must provide
facilities for executing the same agent on many different types of
machine.

� This implies:

– interpreted language:
compiled languages imply reduction to machine code, which
is clearly system dependent — reduced efficiency; (perhaps
use virtual machine technology);

– dynamic linking:
libraries that access local resources must provide a common
interface to different environments.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 35



Chapter 10 An Introduction to Multiagent Systems

A Typology for Mobile Agents

� We can divide mobile agents into at least three types:

– autonomous;

– on-demand;

– ‘active mail’-type

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 36



Chapter 10 An Introduction to Multiagent Systems

Autonomous Mobile Agents

� By autonomous mobile, we mean agents that are able to decide
for themselves where to go, when, and what to do when they get
there (subject to certain resource constraints, e.g., how much
‘emoney’ they can spend.

� Such agents are generally programmed in a special language
that provides a go instruction. . . best known example is
TELESCRIPT.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 37



Chapter 10 An Introduction to Multiagent Systems

On-Demand Mobility

� The idea here is that a host is only required to execute an agent
when it explicitly demands the agent.

� The best known example of such functionality is that provided by
the JAVA language, as embedded within html.

� A user with a JAVA-compatible browser (e.g., NETSCAPE 2.0) can
request html pages that contain applets – small programs
implemented in the JAVA language.

� These applets are downloaded along with all other images, text,
forms, etc., on the page, and, once downloaded, are executed on
the user’s machine.

� JAVA itself is a general purpose, C/C++ like programming
language, (that does not have pointers!)

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 38



Chapter 10 An Introduction to Multiagent Systems

‘Active-Mail’ Agents

� The idea here is to ‘piggy-back’ agent programs onto mail.

� The best-known example of this work is the mime extension to
email, allowing Safe-Tcl scripts to be sent.

� When email is received, the ‘agent’ is unpacked, and the script
executed. . . hence the email is no longer passive, but active.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 39



Chapter 10 An Introduction to Multiagent Systems

2.1 Telescript

� TELESCRIPT was a language-based environment for constructing
mobile agent systems.

� TELESCRIPT technology is the name given by General Magic to a
family of concepts and techniques they have developed to
underpin their products.

� There are two key concepts in TELESCRIPT technology:

– places; and

– agents.

� Places are virtual locations occupied by agents. A place may
correspond to a single machine, or a family of machines.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 40



Chapter 10 An Introduction to Multiagent Systems
� Agents are the providers and consumers of goods in the

electronic marketplace applications that TELESCRIPT was
developed to support.

� Agents are interpreted programs, rather like TCL.

� Agents are mobile — they are able to move from one place to
another, in which case their program and state are encoded and
transmitted across a network to another place, where execution
recommences.

� In order to travel across the network, an agent uses a ticket,
which specifies the parameters of its journey:

– destination;

– completion time.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 41



Chapter 10 An Introduction to Multiagent Systems
� Agents can communicate with one-another:

– if they occupy different places, then they can connect across a
network;

– if they occupy the same location, then they can meet one
another.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 42



Chapter 10 An Introduction to Multiagent Systems
� TELESCRIPT agents have an associated permit, which specifies:

– what the agent can do (e.g., limitations on travel);

– what resources the agent can use.

� The most important resources are:

– ‘money’, measured in ‘teleclicks’ (which correspond to real
money);

– lifetime (measured in seconds);

– size (measured in bytes).

� Agents and places are executed by an engine.

� An engine is a kind of agent operating system — agents
correspond to operating system processes.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 43



Chapter 10 An Introduction to Multiagent Systems
� Just as operating systems can limit the access provided to a

process (e.g., in UNIX, via access rights), so an engine limits the
way an agent can access its environment.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 44



Chapter 10 An Introduction to Multiagent Systems
� Engines continually monitor agent’s resource consumption, and

kill agents that exceed thei limit.

� Engines provide (C/C++) links to other applications via
application program interfaces (APIs).

� Agents and places are programmed using the TELESCRIPT

language:

– pure object oriented language — everything is an object —
apparently based on SMALLTALK;

– interpreted;

– two levels — high (the ‘visible’ language), and low (a
semi-compiled language for efficient execution);

– a ‘process’ class, of which ‘agent’ and ‘place’ are sub-classes;

– persistent;

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 45



Chapter 10 An Introduction to Multiagent Systems
� General Magic claim that the sophisticated built in

communications services make TELESCRIPT ideal for agent
applications!

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 46



Chapter 10 An Introduction to Multiagent Systems
� Summary:

– a rich set of primitives for building distributed applications,
with a fairly powerful notion of agency;

– agents are ultimately interpreted programs;

– no notion of strong agency!

– likely to have a significant impact (support from Apple, AT&T,
Motorola, Philips, Sony).

– not heard of anyone who has yet actually used it!

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 47



Chapter 10 An Introduction to Multiagent Systems

2.2 TCL/TK and Scripting Languages

� The (free) Tool Control Language (TCL — pronounced ‘tickle’)
and its companion TK, are now often mentioned in connection
with agent based systems.

� TCL was primarily intended as a standard command language
— lots of applications provide such languages, (databases,
spreadsheets, . . . ), but every time a new application is
developed, a new command language must be as well.

TCL provides the facilities to easily implement your own
command language.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 48



Chapter 10 An Introduction to Multiagent Systems
� TK is an X window based widget toolkit — it provides facilities for

making GUI features such as buttons, labels, text and graphic
windows (much like other X widget sets).

TK also provides powerful facilities for interprocess
communication, via the exchange of TCL scripts.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 49



Chapter 10 An Introduction to Multiagent Systems
� TCL/TK combined, make an attractive and simple to use GUI

development tool; however, they have features that make them
much more interesting:

– TCL it is an interpreted language;

– TCL is extendable — it provides a core set of primitives,
implemented in C/C++, and allows the user to build on these
as required;

– TCL/TK can be embedded — the interpreter itself is available
as C++ code, which can be embedded in an application, and
can itself be extended.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 50



Chapter 10 An Introduction to Multiagent Systems
� TCL programs are called scripts.

� TCL scripts have many of the properties that UNIX shell scripts
have:

– they are plain text programs, that contain control structures
(iteration, sequence, selection) and data structures (e.g.,
variables, lists, and arrays) just like a normal programming
language;

– they can be executed by a shell program (tclsh or wish);

– they can call up various other programs and obtain results
from these programs (cf. procedure calls).

� As TCL programs are interpreted, they are very much easier to
prototype and debug than compiled languages like C/C++ —
they also provide more powerful control constructs. . .

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 51



Chapter 10 An Introduction to Multiagent Systems

– . . . but this power comes at the expense of speed.

– Also, the structuring constructs provided by TCL leave
something to be desired.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 52



Chapter 10 An Introduction to Multiagent Systems
� So where does the idea of an agent come in?

It is easy to build applications where TCL scripts are exchanged
across a network, and executed on remote machines.
Thus TCL scripts become sort of agents.

� A key issue is safety. You don’t want to provide someone elses
script with the full access to your computer that an ordinary
scripting language (e.g., csh) provides.

� This led to Safe TCL, which provides mechanisms for limiting the
access provided to a script.
Example: Safe TCL control the access that a script has to the UI,
by placing limits on the number of times a window can be
modified by a script.

� But the safety issue has not yet been fully resolved in TCL. This
limits its attractiveness as an agent programming environment.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 53



Chapter 10 An Introduction to Multiagent Systems
� Summary:

– TCL/TK provide a rich environment for building
language-based applications, particularly GUI-based ones.

– But they are not/were not intended as agent programming
environments.

– The core primitives may be used for building agent
programming environments — the source code is free, stable,
well-designed, and easily modified.

http://www.csc.liv.ac.uk/˜mjw/pubs/imas/ 54


