
cis3.5, fall 2009, lab III.2 / prof sklar.

Understanding “Game State”

1 Overview

We have discussed briefly in class the notion of game state. The idea is that any game consists of a sequence of
states, where each state is characterized by a combination of visual, audio and/or animation cues. Below is an
example of a game with four states. Each state is given a number, starting with 0 and ending with 3 (computer
scientists always start counting with 0).

game over.start:
sprite says howdy

gamestate = 3
end:
sprite says ciao

gamestate = 1
forward:
sprite moves right

gamestate = 2
backward:
sprite moves left

gamestate = 4gamestate = 0

The first state,
gamestate = 0,
is when the game
starts up. In this
state, the screen
will show a sprite
(character) who
goes to its starting
location and says
“howdy”. Then
the game state
changes to 1.

In the 2nd state,
gamestate = 1,
the sprite moves
to the right, un-
til it reaches the
far right edge of
its display window.
Then the game
state changes to 2.

In the third state,
gamestate = 2,
the sprite moves
to the left, un-
til it reaches the
far left edge of
its display window.
Then the game
state changes to 3.

In the fourth state,
gamestate = 3,
the sprite stops
moving and says
“ciao” (goodbye).
Then the game
state changes to 4.

In the fifth state,
the game is over.

Your assignment with this lab is to create a little game with a small number of states, like the one

above, and code the game in both Processing and Scratch.

Before you begin, first have a look at the next two pages which show how to code the

above example in each environment.

You will notice in the example code for both Processing and Scratch that I use a numeric entity called a variable

to store the “game state”. A variable is a labeled piece of memory inside the computer. You can think of it as
a handy box where you can put a piece of information. You give the box a label, or name, and then you put a
value inside the box. When you need to refer to the value stored inside the box, you just use its name. You can
change the value inside the box, while the program runs. You have already used variables in Processing, like x

and y for storing the coordinates of shapes that you animate in a sketch.
In the case of my examples here, I have named my variable gamestate and given it a value of 0 to start with.
As the game progresses, the program changes the value of my variable, i.e., the value stored inside the memory
box labeled gamestate.

Now it’s your turn...

1. Design your game states using a diagram like mine, above.

2. Create your animation in Processing. Use my example to get started. Type it in and make sure that it
works for you and that you understand it. Then modify it to follow your game state design.

3. Create your animation in Scratch. Again, use my example to get started. Enter it and make sure that it
works for you and that you understand it. Then modify it to follow your game state design.

1

2 Using “game state” in Processing

On the right is the Processing code
for a little animation that uses
“game state”, as described on the
previous page. Notice that there
is a variable called gamestate

declared at the top of the program.
Inside the setup() function, this
variable is set to 0.

The animation shows a black circle
(acting as my “sprite”) that starts
on the left edge of the display
window and says “howdy”. This is
gamestate == 0.

Note that in Processing, you need
to use 2 equals signs, ==, to test
to see if two values (on either side
of the == signs) are equal to each
other.

The circular sprite moves, along
with the text, to the right. This
is gamestate == 1. When the
sprite reaches the right edge of the
display window, the value of the
game state variable changes to 2.

In game state 2, the circular sprite
moves, along with the text, to the
left. When the sprite reaches the
left edge of the display window, the
value of the game state variable
changes to 3.

In game state 3, the sprite stops
moving and its text message
changes from “howdy” to “ciao”.
Then the game state changes to 4.

Game state 4 means that the game
is over, and the program stops
drawing.

int gamestate;

int x, y;

int tx, ty;

PFont font;

void setup() {

frameRate(10);

font = loadFont("ArialMT-12.vlw");

textFont(font);

gamestate = 0;

x = 0;

y = height-20;

}

void draw() {

println(‘‘gamestate=’’ + gamestate);

tx = x + 10;

ty = y - 10;

if (gamestate == 0) {

background(#ffffff);

ellipse(x,y,10,10);

fill(#000000);

text("howdy",tx,ty);

gamestate = 1;

}

else if (gamestate == 1) {

background(#ffffff);

ellipse(x,y,10,10);

fill(#000000);

text("howdy",tx,ty);

x = x + 10;

if (x > width) {

gamestate = 2;

}

}

else if (gamestate == 2) {

background(#ffffff);

ellipse(x,y,10,10);

fill(#000000);

text("howdy",tx,ty);

x = x - 10;

if (x < 10) {

gamestate = 3;

}

}

else if (gamestate == 3) {

background(#ffffff);

ellipse(x,y,10,10);

fill(#000000);

text("ciao",tx,ty);

gamestate = 4;

}

else if (gamestate == 4) {

noLoop();

}

}

2

3 Using “game state” in Scratch

On the right is the Scratch code
for the same animation. It also
uses “game state”. There is a
variable called gamestate used.

Click on the Variables tab in order
to create a variable in Scratch. Ini-
tially, this variable is set to 0 (see

the block under).

The animation shows the Scratch
cat sprite starting on the left
edge of the display window
and saying “howdy”. This is
gamestate == 0.

Note that in Scratch, you only
need to use one equals signs, =, to
test to see if two values (on either
side of the = signs) are equal to
each other (inside a green block).

The cat moves, along with
the text, to the right. This is
gamestate == 1. When the
cat reaches the right edge of the
display window, the value of the
game state variable changes to 2.

In game state 2, the cat moves,
along with the text, to the left.
When the cat reaches the left edge
of the display window, the value of
the game state variable changes to
3.

In game state 3, the cat stops
moving and its text message
changes from “howdy” to “ciao”.
Then the game state changes to 4.

Game state 4 means that the game
is over, and the program stops
drawing.

Note: in this example, you need to
click on the green flag to start the

animation .

3

