
cis3.5 fall2009 advanced material: javascript

topics:

• whirlwind tour of javascript

resources:

• tutorial:

http://www.w3schools.com/JS/default.asp

• reference:

http://www.w3schools.com/jsref/default.asp

cis3.5-fall2009-sklar-lec.javascript 1

introduction to javascript

• javascript is a type of client-side programming

– client-side vs server-side web programming:

∗ client-side runs on the client: web pages are stored on the server, get downloaded to

the client and run on the client

∗ server-side runs on the server: code is stored on the server and run there

• javascript code is listed in the head portion of your HTML file:

<head>...</head>

after the <title>...</title>

• javascript code goes between script tags:

<script>...</script>

• javascript code can also go in between the <body>...</body> tags on a web page

• javascript can also be invoked from inside some HTML form options, like onclick

cis3.5-fall2009-sklar-lec.javascript 2

first example

• The body of an HTML page is referred to as the document object in Javascript. To write

something on the page, you invoke the write function of the document object:

document.write()

• I put () at the end of a function name to indicate that it is a function (instead of some
other type of property, like a variable). When you invoke the function (i.e., make it run),
sometimes you put things inside the ()’s, as in the example below.

<html>

<head>

<title>first javascript program</title>

<script language="javascript">

document.write("<h2>hello from javascript!</h2>")

</script>

</head>

<body>

hello from the body of your web page!

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 3

variables

• Variables are like temporary places to store data. Variables have a name and a type

(which can be a number or a string, i.e., alphanumberic). Variable names have to follow

rules: letters and numbers and underscore () are allowed, but name cannot start with a

number. Variables have to be “declared” before they can be used.

• The browser window is referred to as the window object in javascript. To pop up a new
window with a “prompt” inside it (something that asks for user input), use the
window.prompt() function, as shown below.

<html>

<head>

<script language="javascript">

var num;

num = window.prompt("enter a number", "0")

document.write("<h2>hello from javascript!</h2>")

document.write("num=" + num)

</script>

</head>

<body>

hello from the body of your web page!

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 4

operators

• Operators are like mathematical operators and provide ways of combining data that is

stored in variables or constants.

• A “constant” is a way of specifying data without storing it in a variable.

A numeric constant is like: 2 or 34.789

A string constant is written in double quotes, like: "hello"

• The operators that manipulate numbers are: + for addition, − for subtraction, ∗ for

multiplication, / for division, and % for modulo (integer division).

• Note that the + operator is also can also be used with strings, to concatenate two strings

together.

• The operators that compare two numbers are: == for testing equality, ! = for testing

inequality, > for testing greater than, >= for testing greater than or equal to, < for

testing less than, and <= for testing less than or equal to.

• parseInt() is a built-in function (i.e., it is part of javascript) that converts a string value

to a numeric value. This is handy in case you want to do math on something the user

enters. Typically, the values entered by users are stored in string variables and have to be

converted to numeric variables before you can perform mathematical operations on them.

cis3.5-fall2009-sklar-lec.javascript 5

• The example below shows how to prompt the user for input, convert the user’s input from
string format to numeric format and then perform math on that number (multiply it by 2)
and report the result.

<html>

<head>

<script language="javascript">

var snum;

var num;

var num2

snum = window.prompt("enter a number", "0")

num = parseInt(snum)

num2 = num * 2

document.write("<h2>")

document.write("hello from javascript!")

document.write("<p>")

document.write("your number =" + num)

document.write("<p>")

document.write("2 times your number =" + num2)

</script>

</head>

<body>

hello from the body of your web page!

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 6

HTML forms

• Forms provide a means in HTML for users to enter input in different ways using elements

right inside the browser window (instead of having to pop up a javascript prompt window,

as we did above).

• Forms are included in the body of an HTML file and are enclosed in the following tags:

<form> ... </form>

• With forms, the user enters data and then presses enter or clicks a submit button that

sends the form data to be processed (depending on how the form is designed).

• This form data might be processed on the server, where the HTML file is stored, using a

language like PHP.

• The form data could also be processed on the client, using javascript—which is what we’ll

do here.

cis3.5-fall2009-sklar-lec.javascript 7

• The example below shows how the user can enter information in a “text field” on a form
and, after pressing the enter key, the data is processed by javascript and the user’s input
is displayed inside the form.

<html>

<body>

hello from the body of your web page!

<form name="form1">

<input type="text" name="formname">

</form>

<script language="javascript">

var myname;

myname = prompt("enter your name:", "")

document.form1.formname.value = "hi, " + myname

</script>

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 8

comments

• Comments are text that is ignored by browser or javascript interpreter.

• in HTML, comments are enlosed in tags like this:

<!-- put comment here -->

• In javascript, comments begin with two slashes and contine to the end of a line, like this:

// put comment here

• It is good practice to put javascript code inside HTML comments, just in case a browser
doesn’t support javascript (in which case, the browser wouldn’t know what to do with the
javascript code and would just display the javascript code like plain text).

<html>

<head>

<script language="javascript">

<!--

document.write("<h2>hello from javascript!</h2>")

-->

</script>

</head>

<body>

hello from the body of your web page!

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 9

dialog boxes

• A dialog box is a window that pops up and asks the user for input. We have already used

the prompt() dialog box. The dialog boxes are listed below:

– The alert() box displays a message for the user, who only has to click on “ok” to

make the box go away:

alert("hello!")

– The confirm() box displays a message to which the user can respond with either

“ok” or “cancel”:

okay = confirm("are you sure?");

– The prompt() box asks the user for text input, as you have seen.

cis3.5-fall2009-sklar-lec.javascript 10

branching statements

• The main type of branching statement in javascript is if ... else.

<html>

<body>

<script language="javascript">

<!--

alert("hello friend!")

myname = prompt("what is your name?", "")

okay = confirm("so, your name is " + myname + "?")

if (okay) {

document.write("hello " + myname + ", and welcome to my chocolate factory!")

}

else {

document.write("sorry, wrong number!")

}

//-->

</script>

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 11

events

• An event is something the user does, like click on a button, move the mouse, or enter text.

• Javascript can be used in conjunction with HTML to “catch” (recognize) user events and

respond to them. One commonly caught event is called onclick, which refers to

situations where the user clicks on a button in an HTML form.

• You can embed javascript within the HTML form to make the button respond in a
particular way, such as displaying text in the HTML window or popping up a dialog box.

<html>

<body>

<form name="form1">

please enter your name:

<input type="text" name="yourname">

click this button

<input type="button" value="greet" onclick="form1.txtgreet.value=’hello, ’ + form1.yourname.value">

<input type="text" name="txtgreet">

</form>

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 12

functions

• In addition to using javascript’s built-in functions (i.e., those that are part of the

language), you can also write your own functions.

• An example is shown below. Things to note:

– the keyword function

– the function name (the word “greet” after the function keyword, in the example) is

something that you define yourself; the naming rules are the same as those described

above for variables

– the parentheses () are placed after the function name

– the body (i.e., content) of the function is enclosed in curly brackets { }

cis3.5-fall2009-sklar-lec.javascript 13

• In this example, the response is the same as the previous example without a function.
Using the function makes the code neater. It also provides a bit of “reusable” code, since
you can call the same function from other onclick elements.

<html>

<head>

<script language="javascript">

<!--

function greet() {

document.form1.txtgreet.value = "Hello, " + document.form1.yourname.value

}

//-->

</script>

</head>

<body>

<form name="form1">

please enter your name:

<input type="text" name="yourname">

click this button

<input type="button" value="greet" onclick="greet()">

<input type="text" name="txtgreet">

</form>

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 14

• The next example shows how you can read information from a form, process it and display

output all in the same form. The function makes that easier.

<html>

<head>

<script language="javascript">

<!--

function calcIt() {

var num1, num2

num1 = Number(document.form1.mynum1.value)

num2 = Number(document.form1.mynum2.value)

document.form1.txtsum.value = num1 + num2

}

//-->

</script>

</head>

<body>

<form name="form1">

enter first number:

<input type="text" name="mynum1">

enter second number:

<input type="text" name="mynum2">

click this button to add them up!

<input type="button" value="add’em" onclick="calcIt()">

<input type="text" name="txtsum">

</form>

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 15

function arguments

• Sometimes you want a function to do something with data where you don’t specify inside

the function which part of the form that the data comes from. This can make a function

more flexible, so that it could be used to manipulate or respond to data elements from

different parts of forms. This flexibility is provided by the use of function arguments.

• Function arguments are listed in between the parentheses () just after the function

name. Function arguments are variables, and they are used just like variables inside the

body of the function.

• In the example below, the name of the function is calcIt. It has two arguments, which

are named num1 and num2. The function adds its two arguments together and displays the

answer in a text field in the form.

cis3.5-fall2009-sklar-lec.javascript 16

<html>

<head>

<script language="javascript">

<!--

function calcIt(num1, num2) {

var sum

sum = num1 + num2

document.form1.txtsum.value = sum

}

//-->

</script>

</head>

<body>

<form name="form1">

enter first number:

<input type="text" name="mynum1">

enter second number:

<input type="text" name="mynum2">

click this button to add them up!

<input type="button" value="add’em"

onclick="calcIt(Number(form1.mynum1.value), Number(form1.mynum2.value))">

<input type="text" name="txtsum">

</form>

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 17

iteration

• Sometimes you want to do things multiple times. Iteration, or looping statements, allow

you to do this.

• A for loop will do something for a specified number of times.

• The example below draws a table, based on the number of rows specified by the user.

cis3.5-fall2009-sklar-lec.javascript 18

<html>

<head>

<script language="javascript">

<!--

function draw_table(numrows) {

var i;

document.write("<table>");

for (i=0; i<numrows; i++) {

document.write("<tr>");

document.write("<td bgcolor=#999999>row " + i + "</td>");

document.write("<td bgcolor=#ff0000>hello</td>");

document.write("</tr>");

}

document.write("</table>");

}

//-->

</script>

</head>

<body>

<form name="form1">

enter number of rows for your table:

<input type="text" name="mynum">

click this button to draw the table!

<input type="button" value="make table"

onclick="draw_table(Number(form1.mynum.value))">

</form>

</body>

</html>

cis3.5-fall2009-sklar-lec.javascript 19

