
1

Mobile Game
Programming

Just that facts.

guest instructor: Matt Meyer

Introduction I

 Mobile Devices (Primary Purpose):
 Gaming Devices: Nintendo DS, PSP.
 Music Devices: ZUNE, IPod.
 Cellphone Devices: Nokia, Samsung
 Web Devices: Blackberry, IPhone, PDA’s

 Line between all of these devices is rapidly
becoming blurred.

Introduction II

 Modern mobile devices are small computers
(simple phones == 1990 computer; IPhone ==
original XBOX).

 Signature feature of these devices is built in
network support. Mobile devices driving force
behind advances in wireless communication
technologies.

 Limited RAM as well as limited input, output, and
display capabilities.

Introduction III

 What they lack in power, they make up for
in sheer installed base. Most of the world
owns at least one mobile phone.

 Worldwide market for portable and mobile
games $5.4 billion in 2008. Estimates are
$11.7 billion by 2014.

 Apple expected to have 24% of total
portable game software sales in 2014.

2

How Games are Implemented I

Embedded Games:
 Built into chipset or OS.
 Ships with device, rarely added after.
 Example: Snake.

SMS Games:
 Piggy back on SMS system for functionality.
 Played by sending text messages to other

phones and servers.

C Games (C#, C++, Mobile-C, Objective-C)
 Written then compiled for specific system.
 Fast, powerful, optimized applications are possible

that directly access phone hardware.
 Different vendors create application development

platforms for developers to use; this allows them to
control what gets put on their devices.

 Examples: BREW (Qualcomm), .NET (Microsoft),
IPhone SDK (IPhone), Mophun (Oberon, mult).

How Games are Implemented II

JAVA (and other Interpreted languages)
 Most mobile devices support JAVA.
 J2ME (Micro Edition) specifically

optimized for mobile devices.
 “Sandbox” makes it less important for

platforms to control access.
 Examples: Processing (FREE & Simple),

MIDP (J2ME), ExEn, WGE, DoJa

How Games are Implemented III

Browser based games.
 Played using an optimized “web browser”

for the mobile device.
 Can be made in any web language (HTML,

PHP, Python, Perl, JavaScript).
 Can be made and displayed using

specialized web applications: FLASH LITE.
 Limitation has been bandwidth… thank you

3G.

How Games are Implemented V

3

What’s different about
mobile games I

Team Size:
 Conventional platform games require

large teams of 50 or more people.
 Mobile games can be developed by

groups as small as 3-5 people.
 Ethan Nicholas working by himself,

created iShoot for the iPhone in 2008
(earned him $800,000 in 5 months).

What’s different about
mobile games II

Budget:
 Conventional games have budgets in

the 1.5-5 million dollar range.
 Most mobile games are implemented for

less then $100,000.
 Limited capabilities of the devices being

designed for are actually an advantage.

What’s different about
mobile games III

Development Lifecycle:
 Conventional games take on average 2-

3 years to develop.
 Most mobile games are completed in a

few months.
 Small team, with small budget, using

iterative development can create a
quality game fairly quickly.

What’s different about
mobile games IV

Networked Devices:
 Mobile devices may be limited in input,

output and display but they have
powerful network capabilities built-in.

 Infrastructure supporting devices can be
easily leveraged for network games.

 Portable nature makes short range
wireless (blue-tooth) also an option.

4

What’s different about
mobile games V

Open Standards:
 Console development requires

“royalties” in order to develop games…
in the mobile world, not so much.

 Standards underlying mobile game
development are published, open and
available for review.

Deployment
 Conventional games are (mostly)

purchased in software outlets.
 Mobile games are (mostly) downloaded

and installed.
 Distribution channels for mobile games

included built in menus, carrier menus as
well as wireless/web portals.

What’s different about
mobile games VI

Strengths of the medium I.

HUGE potential audience.
 Over 2 billion mobile phones in use today (More

people own mobile phones then computers).
 Almost ALL new phones coming on the market

support JAVA applications.
 Almost every mobile device manufacture (except

Apple) has agreed to support Adobe Flash
Player on all of their mobile devices.

Strengths of the medium II.

Portability
 People like to play whenever and

wherever they choose.
 Greater chance for “viral” exposure to

games.

5

Strengths of the medium III.

Networked
 Mobile devices come pre-networked.
 Multiplayer and “social” games already

showing tremendous promise.

Limitations of the medium I

Limited Output (not just screen size).
 Touch screens are cool, but you can’t

play a game with your fingers in the way.
 Harder to get control and help

information on the screen.
 Fewer colors, refresh rates supported.
 Sound problems (codecs, and the

speakers themselves).

Limitations of the medium II.

Limited Application Size.
 Limited RAM is just a fact of life and

graphics add up.
 Limited processing power must also be

considered. Ex: How many collision
checks need to be made in each frame.

Limitations of the medium III.

Latency
 3G is an improvement, but latency in

multiplayer games is always going to be
a problem.

6

Limitations of the medium IV.

Interrupt ability is crucial.
 If the phone rings, the player better be

able to stop the game without getting
killed.

 Application must be able to pause and
recover, without crashing or causing the
player to “lose” something.

Limitations of the medium V.

Rapidly evolving technologies.
 All of those poor saps who thought they

had the mobile game market covered
with BREW got dealt a really rude
surprise by the IPhone.

Making it Work I.

Short Play Times.
 Short levels, short games.
 What if they want to make a call?
 Don’t want to run down the battery.
 If they had more time, they would

choose a different platform.

Making it Work II.

Let people play on their schedule.
 NEVER force them to wait.
 Allow for saves, pauses, repeats,

skips, etc.
 One frustrating level, or bad save, or

slow load and they may never play
again.

7

Making it Work III.

Use the network.
 A phone is a social device.
 At minimum allow the saving and

posting of high scores.
 Multiplayer modes (if you can

overcome latency) are a really good
(and increasingly popular) choice.

Making it Work IV.

Plan to support multiple devices.
 At a minimum plan your game to

support multiple screen sizes.
 Better yet, target a large pool of

devices.

Making it Work V.

Plan for the form factor.
 Avoid designs that require a player to look

at many places (in a larger world) in a short
period of time.

 Avoid making the player “switch” views
often. It’s best if entire world can be seen
on screen at once.

 It’s best if player only has to “control” one
object in the world.

Making it Work V (cont).

Plan for the processor and RAM allotment.
 Aim to use less then what you think is

available.
 Use an a smart timing loop (like an update

manager) to keep track of the actual speed
of your game and make adjustments.

8

Making it Work VI (cont).

Design for a business model.
 Application sale.
 Advertising revenue or product tie-in.
 Trial versions.
 One month licenses.
 Charging for “data traffic” or “airtime”.

For more information:
 IPHONE

 FREE online IPhone programming
course from Stanford University:

• http://www.stanford.edu/class/cs193p/cgi-
bin/index.php

 IPhone Developers Network:
• http://developer.apple.com/iphone/

For more information:

 Flash Lite:
 https://www.adobe.com/cfusion/entitle

ment/index.cfm?e=flashcdk
 Flash – Best Practices for Mobile

Development:
 http://www.adobe.com/devnet/devices

/articles/cryptic_capers_print.html

For more information:

 Mobile Processing – A Java based
scripting environment for mobile
devices.
 http://mobile.processing.org/

 Learning the Processing Language:
 http://processing.org/learning/

