
1

Mobile Game
Programming

Just that facts.

guest instructor: Matt Meyer

Introduction I

 Mobile Devices (Primary Purpose):
 Gaming Devices: Nintendo DS, PSP.
 Music Devices: ZUNE, IPod.
 Cellphone Devices: Nokia, Samsung
 Web Devices: Blackberry, IPhone, PDA’s

 Line between all of these devices is rapidly
becoming blurred.

Introduction II

 Modern mobile devices are small computers
(simple phones == 1990 computer; IPhone ==
original XBOX).

 Signature feature of these devices is built in
network support. Mobile devices driving force
behind advances in wireless communication
technologies.

 Limited RAM as well as limited input, output, and
display capabilities.

Introduction III

 What they lack in power, they make up for
in sheer installed base. Most of the world
owns at least one mobile phone.

 Worldwide market for portable and mobile
games $5.4 billion in 2008. Estimates are
$11.7 billion by 2014.

 Apple expected to have 24% of total
portable game software sales in 2014.

2

How Games are Implemented I

Embedded Games:
 Built into chipset or OS.
 Ships with device, rarely added after.
 Example: Snake.

SMS Games:
 Piggy back on SMS system for functionality.
 Played by sending text messages to other

phones and servers.

C Games (C#, C++, Mobile-C, Objective-C)
 Written then compiled for specific system.
 Fast, powerful, optimized applications are possible

that directly access phone hardware.
 Different vendors create application development

platforms for developers to use; this allows them to
control what gets put on their devices.

 Examples: BREW (Qualcomm), .NET (Microsoft),
IPhone SDK (IPhone), Mophun (Oberon, mult).

How Games are Implemented II

JAVA (and other Interpreted languages)
 Most mobile devices support JAVA.
 J2ME (Micro Edition) specifically

optimized for mobile devices.
 “Sandbox” makes it less important for

platforms to control access.
 Examples: Processing (FREE & Simple),

MIDP (J2ME), ExEn, WGE, DoJa

How Games are Implemented III

Browser based games.
 Played using an optimized “web browser”

for the mobile device.
 Can be made in any web language (HTML,

PHP, Python, Perl, JavaScript).
 Can be made and displayed using

specialized web applications: FLASH LITE.
 Limitation has been bandwidth… thank you

3G.

How Games are Implemented V

3

What’s different about
mobile games I

Team Size:
 Conventional platform games require

large teams of 50 or more people.
 Mobile games can be developed by

groups as small as 3-5 people.
 Ethan Nicholas working by himself,

created iShoot for the iPhone in 2008
(earned him $800,000 in 5 months).

What’s different about
mobile games II

Budget:
 Conventional games have budgets in

the 1.5-5 million dollar range.
 Most mobile games are implemented for

less then $100,000.
 Limited capabilities of the devices being

designed for are actually an advantage.

What’s different about
mobile games III

Development Lifecycle:
 Conventional games take on average 2-

3 years to develop.
 Most mobile games are completed in a

few months.
 Small team, with small budget, using

iterative development can create a
quality game fairly quickly.

What’s different about
mobile games IV

Networked Devices:
 Mobile devices may be limited in input,

output and display but they have
powerful network capabilities built-in.

 Infrastructure supporting devices can be
easily leveraged for network games.

 Portable nature makes short range
wireless (blue-tooth) also an option.

4

What’s different about
mobile games V

Open Standards:
 Console development requires

“royalties” in order to develop games…
in the mobile world, not so much.

 Standards underlying mobile game
development are published, open and
available for review.

Deployment
 Conventional games are (mostly)

purchased in software outlets.
 Mobile games are (mostly) downloaded

and installed.
 Distribution channels for mobile games

included built in menus, carrier menus as
well as wireless/web portals.

What’s different about
mobile games VI

Strengths of the medium I.

HUGE potential audience.
 Over 2 billion mobile phones in use today (More

people own mobile phones then computers).
 Almost ALL new phones coming on the market

support JAVA applications.
 Almost every mobile device manufacture (except

Apple) has agreed to support Adobe Flash
Player on all of their mobile devices.

Strengths of the medium II.

Portability
 People like to play whenever and

wherever they choose.
 Greater chance for “viral” exposure to

games.

5

Strengths of the medium III.

Networked
 Mobile devices come pre-networked.
 Multiplayer and “social” games already

showing tremendous promise.

Limitations of the medium I

Limited Output (not just screen size).
 Touch screens are cool, but you can’t

play a game with your fingers in the way.
 Harder to get control and help

information on the screen.
 Fewer colors, refresh rates supported.
 Sound problems (codecs, and the

speakers themselves).

Limitations of the medium II.

Limited Application Size.
 Limited RAM is just a fact of life and

graphics add up.
 Limited processing power must also be

considered. Ex: How many collision
checks need to be made in each frame.

Limitations of the medium III.

Latency
 3G is an improvement, but latency in

multiplayer games is always going to be
a problem.

6

Limitations of the medium IV.

Interrupt ability is crucial.
 If the phone rings, the player better be

able to stop the game without getting
killed.

 Application must be able to pause and
recover, without crashing or causing the
player to “lose” something.

Limitations of the medium V.

Rapidly evolving technologies.
 All of those poor saps who thought they

had the mobile game market covered
with BREW got dealt a really rude
surprise by the IPhone.

Making it Work I.

Short Play Times.
 Short levels, short games.
 What if they want to make a call?
 Don’t want to run down the battery.
 If they had more time, they would

choose a different platform.

Making it Work II.

Let people play on their schedule.
 NEVER force them to wait.
 Allow for saves, pauses, repeats,

skips, etc.
 One frustrating level, or bad save, or

slow load and they may never play
again.

7

Making it Work III.

Use the network.
 A phone is a social device.
 At minimum allow the saving and

posting of high scores.
 Multiplayer modes (if you can

overcome latency) are a really good
(and increasingly popular) choice.

Making it Work IV.

Plan to support multiple devices.
 At a minimum plan your game to

support multiple screen sizes.
 Better yet, target a large pool of

devices.

Making it Work V.

Plan for the form factor.
 Avoid designs that require a player to look

at many places (in a larger world) in a short
period of time.

 Avoid making the player “switch” views
often. It’s best if entire world can be seen
on screen at once.

 It’s best if player only has to “control” one
object in the world.

Making it Work V (cont).

Plan for the processor and RAM allotment.
 Aim to use less then what you think is

available.
 Use an a smart timing loop (like an update

manager) to keep track of the actual speed
of your game and make adjustments.

8

Making it Work VI (cont).

Design for a business model.
 Application sale.
 Advertising revenue or product tie-in.
 Trial versions.
 One month licenses.
 Charging for “data traffic” or “airtime”.

For more information:
 IPHONE

 FREE online IPhone programming
course from Stanford University:

• http://www.stanford.edu/class/cs193p/cgi-
bin/index.php

 IPhone Developers Network:
• http://developer.apple.com/iphone/

For more information:

 Flash Lite:
 https://www.adobe.com/cfusion/entitle

ment/index.cfm?e=flashcdk
 Flash – Best Practices for Mobile

Development:
 http://www.adobe.com/devnet/devices

/articles/cryptic_capers_print.html

For more information:

 Mobile Processing – A Java based
scripting environment for mobile
devices.
 http://mobile.processing.org/

 Learning the Processing Language:
 http://processing.org/learning/

