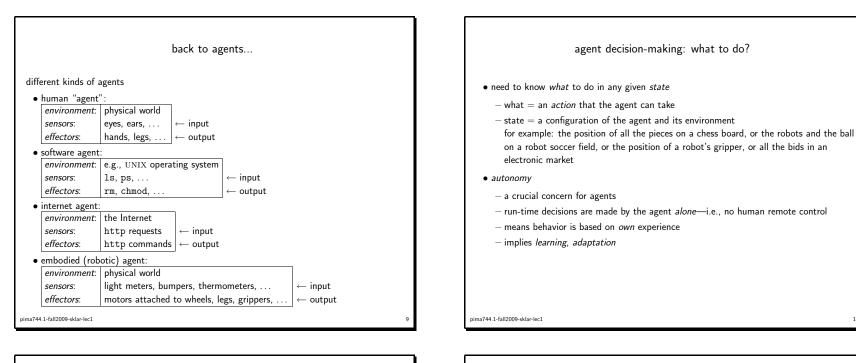
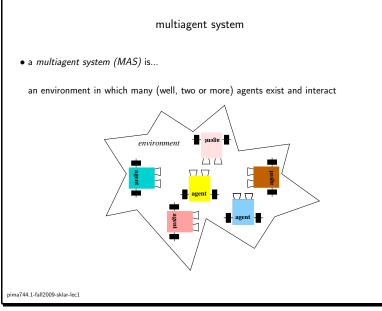


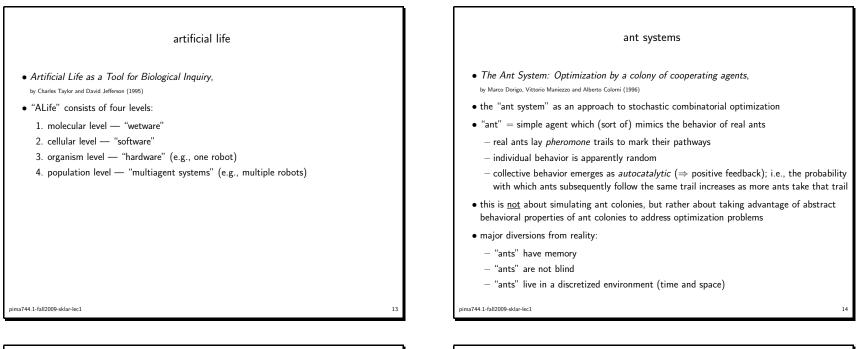
- i'll refer to *agents* and *robots* as a *context*

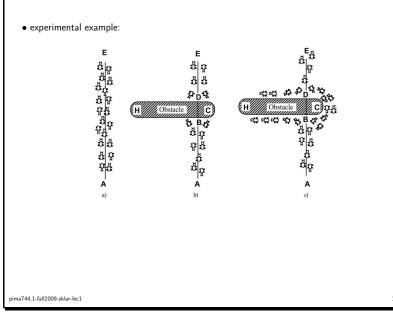

pima744.1-fall2009-sklar-lec1


pima744.1-fall2009-sklar-lec1

getting started	
• programming is like solving puzzles	
• think differently	
• the world is now made up of	
agents and behaviors or	
objects and actions	
pima744.1-fall2009-sklar-lec1 5	

what is a control program? commands • a control program is a set of instructions that tells the agent what to do • a program/robot/agent/device follows commands commands = series of instructions • a *programmer* is a person who writes those instructions • you will learn how to *command* a computer/robot/agent/device • there are many different programming languages that one can use to write programs*command* = *program* = *write instructions* in this class, we will learn MAX • you understand the commands, • the MAX system will translate your program from the high-level code that you write into but does the computer? the robot? the agent? the device? low-level machine language that the computer, and the devices you control, can understand that's a question of cognition ... • then the computer/robot/agent/device will execute those commands by reading the \rightarrow Artificial Intelligence, Cognitive Science instructions in the low-level machine language that it understands • what do you think? something to ponder over and discuss over tea on a rainy day... pima744.1-fall2009-sklar-lec1 pima744.1-fall2009-sklar-lec1

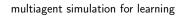



• individual agents are *self-interested*

i.e., they have their own goals, even though there may be team rewards for a group of agents achieving a goal together

- cooperation is not governed—it is *emergent* (and is not necessarily a feature of every multiagent system)
- versus "distributed systems", where
 - goals are only group-based
 - cooperation is engineered to be inherent in the system

pima744.1-fall2009-sklar-lec1



multiagent-based simulation

- Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds, by Mitchel Resnick (1994)
- centralized versus decentralized models, ways of thinking
- the old way: *centralized* "by lead or by seed"
- the new way: *decentralized*
- examples of decentralized computational models:
 - neural networks
 - subsumption architecture
 - cellular automata
- properties of decentralized models:
 - emergent behavior
 - evolutionary learning

pima744.1-fall2009-sklar-lec1

17

- Modeling Nature's Emergent Patterns with Multiagent Languages, by Uri Wilensky (2002)
- decentralized tools for learning: constructionism
 - hands-on exploration
 - no recipe to follow
- NetLogo
 - "turtles (agents)
 - "patches" (environment)
- lessons for understanding decentralized thinking:
 - 1. positive feedback isn't always negative
 - 2. randomness can help create order
 - 3. a flock isn't a big bird
 - 4. a traffic jam isn't just a collection of cars
 - 5. the hills are alive
- pima744.1-fall2009-sklar-lec1