
cisc1110 fall 2010 lecture II.2

• simple data types

• characters

• boolean type

cisc1110-fall2010-sklar-lecII.2 1

storing data: reprise

• last class, we talked about storing numeric data

• now we are going to talk about storing another type of data, specifically character data

• as with numeric data, you can think of the computer’s memory as a bunch of boxes

• inside each box, instead of a number, there is a “character”

• a character can either be a letter: a..z or A..Z

a punctuation mark:

~ ‘ ! @ # $ % ^ & * () - _ + = { } | [] \ : ; " ’ , . / < > ?

or a digit: 0..9

• notice that these are all things you can type on your keyboard!

• also notice that a digit character is NOT the same thing as single-digit number

(more on that later)

cisc1110-fall2010-sklar-lecII.2 2

• as with numeric data, when you store character data you give each box a name

⇒ which, in C++ is called “declaring a variable”

• example:

program code:

char x;

computer’s memory:

x →

• in the example program code above, the name of the box is x

• preceding the name x is the word char, which is the variable’s data type

• as with numeric data types, character data types come in different sizes:

– char : character, for storing simple characters

– wchar_t : wide character, for storing complex “wide” characters

cisc1110-fall2010-sklar-lecII.2 3

assigning values

• we’ll start by talking about char variables

• as with numbers, = is the assignment operator for character variables

• example:

program code:

char x; // declaration

x = ’A’; // assignment

or

char x = ’A’; // declaration and assignment together

computer’s memory:

x → ’A’

• note the use of the single quotes (′) surrounding the character A

• next week, we’ll talk about the use of double quotes (”) for a different type of data (called

a “string” — but let’s not get ahead of ourselves today)

cisc1110-fall2010-sklar-lecII.2 4

character digits versus single-digit numbers

• Note that:

program code:

char x = ’2’;

computer’s memory:

x → ’2’

• is NOT the same as

program code:

int x = 2;

computer’s memory:

x → 2

• the character ’2’ is stored differently in the computer from how the integer 2 is stored

• the integer 2 is stored like this:

0 0 0 0 0 0 1 0

• the character, or digit, ’2’ is stored like this:

0 0 1 1 0 0 1 0

it has the numeric, ASCII character code value of 50

cisc1110-fall2010-sklar-lecII.2 5

outputting character variables

• you can output the value of a character variable using cout

• for example:

char i;

i = ’A’;

cout << "the value of i is " << i << endl;

• or we could have written the following, which would produce the same thing as above:

cout << "the value of i is " << i << "\n";

cisc1110-fall2010-sklar-lecII.2 6

storing characters: ASCII

• ASCII = American Standard Code for Information Interchange

• characters are stored as numbers

• standard table defines 128 characters

• for example, when you define:

char c = ’A’; the data is stored as a number:

‘A’ = 6510 = 010000012
like this:

c →
7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1

• sometimes it is handy to convert between integers and characters explicitly

• for example:

char c = ’A’;

int i;

i = (int)c;

in which case, the value of i will be 65.

cisc1110-fall2010-sklar-lecII.2 7

wide characters

• wide characters take up 2 bytes in the computer’s memory, instead of just 1 (like normal

characters)

• the wide character data type is wchar_t

• it was created to support internationalization

(as in Unicode)

• however, handling of Unicode characters is not well standardized, unfortunately

• so we’ll just use regular char in this class for now...

cisc1110-fall2010-sklar-lecII.2 8

boolean variables

• there is one more simple, or primitive, data type, and that is called bool

• bool comes from boolean with comes from George Boole, who was an English

mathemetician who lived in the first part of the 1800’s

• he formalized a type of logic that is now called “Boolean Logic”

• this logic formalism operates on values that are true or false

• so a bool variable has one of two values: true, which is represented by 1, or false,

which is represented by 0

cisc1110-fall2010-sklar-lecII.2 9

logical operators

• boolean expressions combine bool variables and represent things that are either true or

false

• in C++, there are three logical operators that are used with bool variables and boolean

expressions:

&& and

|| or

! not

• and can be used to put together multiple conditions, for example:

bool raining = false;

bool cloudy = true;

bool umbrella = (raining && cloudy);

cout << "should I take an umbrella? " << umbrella << endl;

umbrella = (raining || cloudy);

cout << "should I take an umbrella? " << umbrella << endl;

cisc1110-fall2010-sklar-lecII.2 10

• the first question is answered 0 or “false”

• the second question is answered 1 or “true”

• explanation follows on the next page when we introduce truth tables

cisc1110-fall2010-sklar-lecII.2 11

truth tables

• AND
a b a && b

true true true

true false false

false true false

false false false

• OR
a b a || b

true true true

true false true

false true true

false false false

• NOT
a ! a

false true

true false

cisc1110-fall2010-sklar-lecII.2 12

