cisc1110 fall 2010 lecture 1X.2

e more about simple classes

e where have we already seen classes?

o why are classes useful?

® how to define and use your own classes and objects
® arrays of objects

® object members in classes

cisc1110-fall2010-sklar-leclX.2

where have we already seen classes?

e you have already used three classes this semester:
— string
— ifstream
— ofstream
e here are some of the member functions that belong to these classes:
— string
* length(), clear(), erase(), replace(), insert (), find(), substr()
— ifstream:
x open(), close(), eof ()
—ofstream

x open(), close()

cisc1110-fall2010-sklar-leclX.2

e we have also mentioned a few data members, though all of these are actually constants
and so are treated somewhat different from data variables:
— string: :npos
—ios::in, ios::out — these belong to the ios class (ifstream and ofstream are
created based on the ios class)
o the syntax with the class name followed by two colons (::) is used to indicate which class
the member after the two colons belongs to.
for example:
— string: :npos — string is the name of the class and npos is the name of the
constant data member belonging to that class
—ios::in — ios is the name of the class and in is the name of the constant data
member belonging to that class
—ios::out — ios is the name of the class and out is the name of the constant data

member belonging to that class

cisc1110-fall2010-sklar-leclX.2

e we use these classes by declaring variables whose data type is one of these classes, e.g.:
string x;
e we call x an object of type string
® then we can use the string member functions to operate on the object x, e.g.:
string x;

x.clear();
x.insert(0, "hello");

notice the x. (“x dot”) notation

cisc1110-fall2010-sklar-leclX.2

why are classes useful? example: pl.cpp

® suppose we wanted to create a program that contains the address book from your cell e
phone :

® |ook at your cell phone address book:

— what kind of information is listed for each entry?
— for example:
« name (first name and last name)
* cell phone number
* email address
* home phone number
* work phone number
o these are called fields

o if we wanted to write a program that stored all this information for everyone in our cell
phone address book, we could do something like example S o o

(we'll pretend we only have 3 friends...) e ———

cisc1110-fall2010-sklar-leclX.2 5 cisc1110-fall2010-sklar-leclX.2

defining a simple class example: p2.cpp

e it is annoying to have to keep track of so many parallel arrays! so this is why the notion of
a class is so useful. we can use a class to link together all the fields for each entry in the
cell phone book

® here is a definition of a class that can hold such an entry:

class person {

public: — things to notice:
string last_name;
string first_name; * two new C++ keywords: class
string cell_number; .
string email; and publlc
string home_number; . .
string work_number * there is a semi-colon at the END
int birth_day; OF THE CLASS DEFINITION,
int birth_month;
int birth_year; after the last curly brace (})

3.

e example shows the previous example (pl.c re-written using this simple class
ple p p ple (pl.cpp g p

(but for only one person—next, we'll show how to do it with more than one person)

cisc1110-fall2010-sklar-leclX.2 7 cisc1110-fall2010-sklar-leclX.2

arrays of objects example: p3.cpp

e you can declare an array where the elements in the array are objects (e.g., instead of ints)

e each element in the array is an object of that class

o for example:
person p[3];
shows how to declare an array of 3 elements where each element is an object of type
person

o you address the elements of the class using a combination of the array [| notation and the
dot notation, like this:
pl0].last_name = "sklar";

0 v

® example

shows the same example as pl.cpp, but with an array of person objects

cisc1110-fall2010-sklar-lecIX.2 9 cisc1110-fall2010-sklar-leclX.2

objects as class members example: p4.cpp

o finally, you can define classes that have data members which are objects
® suppose that we wanted to define a special class just for storing the name data:

class name {
public:
string last;
string first;
}
o then we could use the name class when defining the person class:
class person {
public:
name my_name;
string cell_number;
IS
o you declare a variable of type person, as before:

person p;

e and you address the elements of a nested class using double dot notation, like this:

p.my_name.last = "sklar";

e example [p4.cpp|is a modified version of p2.cpp, using two classes

cisc1110-fall2010-sklar-leclX.2 11 cisc1110-fall2010-sklar-leclX.2

