
cisc1110 fall 2010 lecture V.1

• control structures

• making decisions

• branching statements

• relational operators

• comparing numbers

• comparing strings

cisc1110-fall2010-sklar-lecV.1 1

making decisions

• branching statements are used to allow computer programs to make decisions

• if a statement is true, then do one thing; otherwise, do something else

• you make decisions like this all the time:

If the 5 train is in Nevins St station when my 2 train arrives,

then I will run across the platform and catch the 5 train to Flatbush;

otherwise, I will stay on the 2 train

• a computer program can make the same types of decisions

• and frequently these are made using relational operators...

• example:

if (x > y) {

cout << "x is bigger than y\n";

}

else {

cout << "y is bigger (or the same as x)\n";

}

cisc1110-fall2010-sklar-lecV.1 2

branching statements

• the if statement is part of the C++ language. it is a type of control structure, which

means that the program control can move from one “branch” to another, instead of

always taking a single path.

• there are three forms of the if statement in C++:

(1) simple if, (2) if-else, and (3) if-else-if

cisc1110-fall2010-sklar-lecV.1 3

relational operators

• relational operators are used to compare two values

• they can be used to compare numbers or characters

• comparing characters uses the ASCII table (remember asciimation?)

• the relational operators look like operators in math, except for equality:

== equality != inequality

> greater than < less than

>= greater than or equal to <= less than or equal to

• examples:

x < y

a > b

• relational operators are used as part of statements

• one kind of statement is a branching statement...

cisc1110-fall2010-sklar-lecV.1 4

the simple if statement

• syntax:

if (<something is true>) {

<follow some instructions>

}

• example:

if (x > y) {

cout << "x is bigger than y\n";

}

cisc1110-fall2010-sklar-lecV.1 5

the if-else statement

• syntax:

if (<something is true>) {

<follow some instructions>

}

else {

<follow some other instructions>

}

• example:

if (x > y) {

cout << "x is bigger than y\n";

}

else {

cout << "y is bigger (or the same as x)\n";

}

cisc1110-fall2010-sklar-lecV.1 6

the if-else-if statement

• syntax:

if (<something is true>) {

<follow some instructions>

}

else if {

<follow some other instructions>

}

else if {

<follow other, different instructions>

}

else {

<follow even different instructions>

}

cisc1110-fall2010-sklar-lecV.1 7

• example:

if (x > y) {

cout << "x is bigger than y\n";

}

else if (y > x) {

cout << "y is bigger\n";

}

else {

cout << "y is the same as x\n";

}

cisc1110-fall2010-sklar-lecV.1 8

comparing numbers

int x;

if (x <= 0) {

cout << "x is less than or equal to 0\n";

}

else {

cout << "x is greater than 0\n";

}

//-------------------- OR --------------------

double y;

if (y <= 0) {

cout << "y is less than or equal to 0\n";

}

else {

cout << "y is greater than 0\n";

}

cisc1110-fall2010-sklar-lecV.1 9

comparing strings

• the comparison operators also work with strings

(==, <, <=, >, >=)

• the double equals sign (==) compares the value of two strings and returns true if they are

the same, e.g.:

string s1, s2, s3;

bool a1, a2;

s1 = "david ";

s2 = "ortiz";

s3 = "david ";

a1 = (s1 == s2);

a2 = (s1 == s3);

After the above code fragment:

the value of a1 will be false

and

the value of a2 will be true

cisc1110-fall2010-sklar-lecV.1 10

• the inequality operators (<, <=, >, >=) perform a lexical comparison between two strings

• a “lexical comparison” is like checking if two strings are in alphabetical order: one is less

than the other if it comes before the other alphabetically

• EXCEPT, the lexical comparison is case sensitive and uses the ASCII table, which means

that all the upper case letters (A..Z) come before (are less than) all the lower case letters

(a..z), e.g.:

string s1, s2, s3;

bool a1, a2;

s1 = "ABC";

s2 = "DEF";

s3 = "abc ";

a1 = (s1 < s2);

a2 = (s3 < s2);

After the above code fragment:

the value of a1 will be true because "ABC" < "DEF"

and

the value of a2 will be false because "abc" > "DEF"

cisc1110-fall2010-sklar-lecV.1 11

• NOTE that you CANNOT use relational operators with C style strings

(the reason why has to do with something called pointers and memory addresses—topics

that are covered in the next semester)

• Instead, you have to use the strcmp() function, e.g.:

#include <cstring>

...

char cs1[] = "ABC", cs2[] = "DEF", cs3[] = "abc "; // c style strings

...

a1 = (strcmp(cs1, cs2) < 0);

a2 = (strcmp(cs3, cs2) < 0);

a3 = (strcmp(cs1, cs3) < 0);

• the strcmp() function is in the cstring library

so you have to #include <cstring> to use it

• it compares two string arguments: strcmp(s1, s2) and returns:

a value > 0 if s1 > s2

a value < 0 if s1 < s2

a value == 0 if s1 == s2

cisc1110-fall2010-sklar-lecV.1 12

• you can also use strncmp() function, also in the cstring library, which compares the

first n characters in both strings:

strncmp(s1, s2, n)

it has the same return values as strcmp()

cisc1110-fall2010-sklar-lecV.1 13

example: finding the smallest element in the array

int smallest;

smallest = a[0];

for (i=1; i<100; i++) {

if (a[i] < smallest) {

smallest = a[i];

}

} // end for

cout << "the smallest value in the array is: " << smallest << endl;

cisc1110-fall2010-sklar-lecV.1 14

