cisc1110 fall 2010 lecture V.1

e control structures

e making decisions

® branching statements
e relational operators
e comparing numbers

® comparing strings

cisc1110-fall2010-sklar-lecV.1

making decisions

e branching statements are used to allow computer programs to make decisions
e if a statement is true, then do one thing; otherwise, do something else
e you make decisions like this all the time:

If the 5 train is in Nevins St station when my 2 train arrives,
then I will run across the platform and catch the 5 train to Flatbush;
otherwise, I will stay on the 2 train

® a computer program can make the same types of decisions
e and frequently these are made using relational operators...
e example:

if (x>y) A
cout << "x is bigger than y\n";
}
else {
cout << "y is bigger (or the same as x)\n";

}

cisc1110-fall2010-sklar-lecV.1 2

branching statements

o the if statement is part of the C++ language. it is a type of control structure, which
means that the program control can move from one "branch” to another, instead of
always taking a single path.

O

o there are three forms of the if statement in C++:
(1) simple if, (2) if-else, and (3) if-else-if

cisc1110-fall2010-sklar-lecV.1

relational operators

o relational operators are used to compare two values
o they can be used to compare numbers or characters
e comparing characters uses the ASCII table (remember asciimation?)

o the relational operators look like operators in math, except for equality:

== equality 1= inequality
> greater than < less than

>= | greater than or equal to | <= | less than or equal to

e examples:

x <y
a>b

e relational operators are used as part of statements

e one kind of statement is a branching statement...

cisc1110-fall2010-sklar-lecV.1 4




the simple if statement

e syntax:

if ( <something is true> ) {
<follow some instructions>

}

e example:

if (x>y) {
cout << "x is bigger than y\n";

}

cisc1110-fall2010-sklar-lecV.1

the if-else statement

® syntax:

if ( <something is true> ) {
<follow some instructions>

¥

else {
<follow some other instructions>

}

o example:

if (x>y) {
cout << "x is bigger than y\n";
}
else {
cout << "y is bigger (or the same as x)\n";

}

cisc1110-fall2010-sklar-lecV.1

the if-else-if statement

® syntax:

if ( <something is true> ) {
<follow some instructions>
}
else if {
<follow some other instructions>
}
else if {
<follow other, different instructions>
}
else {
<follow even different instructions>

cisc1110-fall2010-sklar-lecV.1

® example:

if (x>y) Ao
cout << "x is bigger than y\n";
}
else if (y > x ) {
cout << "y is bigger\n";
}
else {
cout << "y is the same as x\n";

}

cisc1110-fall2010-sklar-lecV.1




comparing numbers

int x;
if (x<=0) {
cout << "x is less than or equal to O\n";

}
else {
cout << "x is greater than O\n";
}
// OR
double y;

if (y<=0)A{
cout << "y is less than or equal to O\n";

}
else {
cout << "y is greater than O\n";

cisc1110-fall2010-sklar-lecV.1 9

comparing strings

e the comparison operators also work with strings
(==Y <, <=, >, >=)

o the double equals sign (==) compares the value of two strings and returns true if they are
the same, e.g.:

string s1, s2, s3;
bool al, a2;

sl = "david ";

s2 = "ortiz";

s3 = "david ";

al = ( sl == 82 );
a2 = ( sl == 83 );

After the above code fragment:
the value of a1l will be false
and

the value of a2 will be true

cisc1110-fall2010-sklar-lecV.1 10

e the inequality operators (<, <=, >, >=) perform a lexical comparison between two strings

® a "lexical comparison” is like checking if two strings are in alphabetical order: one is less
than the other if it comes before the other alphabetically

e EXCEPT, the lexical comparison is case sensitive and uses the ASCI| table, which means
that all the upper case letters (A. .Z) come before (are less than) all the lower case letters

(a..z), eg:
string sl1, s2, s3;
bool al, a2;
sl = "ABC";
s2 = "DEF";
s3 = "abc ";
al = ( sl < s2);
a2 = (83 < 82);

After the above code fragment:

the value of al will be true because "ABC" < "DEF"
and

the value of a2 will be false because "abc" > "DEF"

cisc1110-fall2010-sklar-lecV.1 11

e NOTE that you CANNOT use relational operators with C style strings
(the reason why has to do with something called pointers and memory addresses—topics
that are covered in the next semester)

e Instead, you have to use the stremp () function, e.g.:

#include <cstring>

char cs1[] = "ABC", cs2[] = "DEF", cs3[] = "abc "; // c style string]

al = ( stremp( csl, ¢cs2 ) < 0 );
a2 = ( stremp( cs3, ¢cs2 ) <0 );
a3 = ( stremp( csl, ¢s3 ) <0 );

e the strcmp () function is in the cstring library
so you have to #include <cstring> to use it

e it compares two string arguments: strcmp( s1, s2 ) and returns:
avalue > 0 if s1 > s2
avalue < 0if s1 < s2
avalue ==0if s1 == s2

cisc1110-fall2010-sklar-lecV.1 12




® you can also use strncmp () function, also in the cstring library, which compares the
first n characters in both strings:
strocmp( s1, s2, n )
it has the same return values as strcmp ()

cisc1110-fall2010-sklar-lecV.1 13

example: finding the smallest element in the array

int smallest;
smallest = al[0];
for ( i=1; i<100; i++ ) {

if ( af[i] < smallest ) {

smallest = alil;

}
} // end for
cout << "the smallest value in the array is: " << smallest << endl;

cisc1110-fall2010-sklar-lecV.1




