
cisc1110 fall 2010 lecture VIII.3

• run-time analysis of algorithms

• searching algorithms

cisc1110-fall2010-sklar-lecVIII.3 1

run time

• one of the things we do when comparing algorithms in computer science is examine the

run time

• this is the relative amount of time it takes for the program to run

• it is usually calculated based somehow on the amount of data the program is dealing with

• in the case of sorting algorithms, the run time analysis is based on the number of elements

in the array being sorted

• if we call the number of elements in the array being sorted N , then we want to determine,

for each algorithm, the amount of run time — also called order — relative to N

cisc1110-fall2010-sklar-lecVIII.3 2

run-time analysis of sorting algorithms

• blort sort — cannot compute, since the number of passes made is not predictable

in the best case, only one pass through the array is made, in the case where the array is in

sorted order to begin with. in the worst case, the number of passes is infinite...

• selection sort — order N2 = O(N2)

because there is one pass made for each element in the array, i.e., as each element is

shifted from the array to be sorted into the auxiliary array, and for each pass, the algorithm

looks through the array to find the smallest element to select (which takes O(N))

• insertion sort — order N2 = O(N2)

because there is one pass made for each element in the array, i.e., as each element is

shifted from the array to be sorted into the auxiliary array (same as selection sort), and for

each pass, the algorithm looks through the auxiliary array to find a position for the new

element (which takes O(N))

• bubble sort – order (N − 1)2 = O((N − 1)2)

because there is one pass made for each element in the array minus 1, and for each pass,

the algorithm compares each element in the array to its neighbor, starting with the first

element in the array and ending with the second to last element (which takes O(N − 1))

cisc1110-fall2010-sklar-lecVIII.3 3

searching algorithms

• often, when you have data stored in an array, you need to locate an element within that

array

• this is called searching

• typically, you search for a key value (simply the value you are looking for) and return its

index (the location of the value in the array)

• as with sorting, there are many searching algorithms...

• we’ll study the following:

– sequential or linear search

∗ linear search on unsorted data

∗ linear search on sorted data

– binary search

cisc1110-fall2010-sklar-lecVIII.3 4

linear search on UNSORTED DATA

• linear search simply looks through all the elements in the array, one at a time, and stops

when it finds the key value

• this is inefficient, but if the array you are searching is not sorted, then it may be the only

practical method

• example code:

int linearSearch(int key) {

for (int i=0; i<NUM_DICE; i++) {

if (key == dice[i]) {

return(i);

}

} // end for i

return(-1);

} // end of linearSearch()

cisc1110-fall2010-sklar-lecVIII.3 5

linear search on SORTED data

• if the array you are searching IS sorted, then you can modify the linear search to stop

searching if you have looked past the place where the key would be stored if it were in the

array

• example code:

int linearSearch2(int key) {

for (int i=0; i<NUM_DICE; i++) {

if (key == dice[i]) {

return(i);

}

else if (key < dice[i]) {

return(-1);

}

} // end for i

return(-1);

} // end of linearSearch2()

cisc1110-fall2010-sklar-lecVIII.3 6

binary search

• binary search is much more efficient than linear search, ON A SORTED ARRAY

• binary search CANNOT be used on an UNSORTED array!

• it takes the strategy of continually dividing the search space into two halves, hence the

name binary

• say you are searching something very large, like the phone book... if you are looking for

one name (e.g., “Gilligan”), it is extremely slow and inefficient to start with the A’s and

look at each name one at a time, stopping only when you find “Gilligan”. but this is what

linear search does.

• binary search acts much like you’d act if you were looking up “Gilligan” in the phone book

– you’d open the book somewhere in the middle, then determine if “Gilligan” appears

before or after the page you have opened to

– if “Gilligan” appears after the page you’ve selected, then you’d open the book to a

later page

– If “Gilligan” appears before the page you’ve selected, then you’d open the book to an

earlier page

cisc1110-fall2010-sklar-lecVIII.3 7

• you’d repeat this process until you found the entry you are looking for or until you realized

that the entry wasn’t in the array (phone book)

• example code:

int binarySearch(int key) {

int lo = 0, hi = NUM_DICE-1, mid;

while (lo <= hi) {

mid = (lo + hi) / 2;

if (key == dice[mid]) {

return(mid);

}

else if (key < dice[mid]) {

hi = mid - 1;

}

else {

lo = mid + 1;

}

} // end while

return(-1);

} // end of binarySearch()

cisc1110-fall2010-sklar-lecVIII.3 8

