
cisc3665

game design

fall 2011

lecture # III.3

path planning

topics:

• pathfinding

• waypoints

• A*

references:

• notes on pathfinding and waypoints from: AI for Game Developers, by David M. Bourg

and Glenn Seemann. O’Reilly Media (2004), chapters 6 and 7.

cisc3665-fall2011-sklar-lecIII.3 1

basic pathfinding

• pathfinding is simply defined as figuring out how to move an agent from one location to

another

• the simplest algorithm is similar to the “chasing” algorithm from chapter 2 of Bourg and

Seemann:

PVector position, destination;

// update x position

if (position.x > destination.x)

position.x--;

else if (position.x < destination.x)

position.x++;

// update y position

if (position.y > destination.y)

position.y--;

else if (position.y < destination.y)

position.y++;

• this works fine if we don’t have to worry about the edges of the display window

cisc3665-fall2011-sklar-lecIII.3 2

• the shape of the agent’s path, or trajectory, could be either:

 desitnation.y)

(position.x,
 position.y)

(destination.x,
 destination.y)

(position.x,
 position.y)

(destination.x,

(a) (b)

• the trajectory on the left (a) results if the agent cannot move diagonally, so two drawing

updates occur, one after the “update x position” clause and one after the “update y

position” clauses in the algorithm on the previous page

• the trajectory on the right (b) results if the agent can move diagonally, so one drawing

update occurs after both the “update x position” and “update y position” clauses in the

algorithm on the previous page

• it is also possible to use the Bresenham algorithm (or some other scan-conversion

algorithm) to produce a smoother line (see Bourg and Seemann ch 2 for details)

cisc3665-fall2011-sklar-lecIII.3 3

obstacle avoidance

• The simple pathfinding algorithm is insufficient if there are obstacles in between the agent’s

position and its destination. So then you have to apply an obstacle avoidance technique.

• Let’s assume that our agent does not know about any obstacles in its path until it is right

next to one. The figure below shows the agent’s current position with its adjacent cells

colored light grey, to indicate that these are the cells that the agent can sense with its

perception capabilities. There is an obstacle between the agent’s current position and its

destination, but the agent does not know about it because the obstacle is beyond the

range of the agent’s sensors.

 desitnation.y)

(position.x,
 position.y)

(destination.x,

cisc3665-fall2011-sklar-lecIII.3 4

• The simplest obstacle avoidance algorithm would be something like this:

// determine desired location to try

if (position.x > destination.x)

try.x = position.x - 1;

else if (position.x < destination.x)

try.x = position.x + 1;

if (position.y > destination.y)

try.y = position.y - 1;

else if (position.y < destination.y)

try.y = position.y + 1;

if the cell at (try.x,try.y) does not have an obstacle in it,

then move to (try.x,try.y)

else try the other cells adjacent to (position.x,position.y)

until an empty cell is found

• The “try other cells” portion of the code could either randomly pick adjacent cells until an

empty one is found, or could look more methodically, for example moving clockwise (or

counterclockwise) around the adjacent cells until an empty one is found.

• The more methodical approach is generally better and more efficient.

cisc3665-fall2011-sklar-lecIII.3 5

obstacle tracing

• If your agent has found an obstacle in its path, it needs to find some way of going around

it.

• The figure below shows two alternatives for obstacle tracing—moving around the edge of

an obstacle. At first, the agent moves towards its destination using the simple pathfinding

algorithm. But when it encounters an obstacle and can no longer follow that algorithm,

the agent then invokes an obstacle-tracing algorithm. The agent chooses between initially

moving left or right. This can an arbitrary decision, since the agent does not know the

extent of the obstacle until it has completed tracing its perimeter.

 desitnation.y)

(position.x,
 position.y)

(destination.x,

cisc3665-fall2011-sklar-lecIII.3 6

• One method for determining how the agent should move when it encounters an obstacle is

as follows. Project an imaginary line-of-sight from the agent’s position to its destination.

Then when the obstacle is encountered, select the initial move of the obstacle-tracing

algorithm by moving in the direction that brings the agent closest to the line-of-sight.

This is shown in the figure below:

 desitnation.y)

(position.x,
 position.y)

(destination.x,

• This technique is also handy for knowing when to stop executing the obstacle-tracing

algorithm and return to executing the simple pathfinding algorithm. When the agent

moves around the obstacle, it should choose its moves to stick as close to the line-of-sight

as possible (given the constraints of the obstacle). As soon as the agent can move back

onto the line-of-site, unobstructed, then the agent should switch back to the

simple-pathfinding algorithm.

cisc3665-fall2011-sklar-lecIII.3 7

using the line-of-sight

• Here’s how to use the line-of-sight. First, assume that you know the location of the

agent’s current position (pos.x, pos.y) and its destination (dest.x, dest.y).

• Then you can use the point-slope formula to determine if any point (x, y) is on that line.

y − pos.y = m(x− pos.x)

where m is the slope of the line between the agent’s current position and its destination:

y − pos.y =
(dest.y − pos.y)

(dest.x− pos.x)
(x− pos.x)

• Since you know (pos.x, pos.y) and (dest.x, dest.y), you can easily determine if any given

(x, y) works in the above equation by doing the math: plug in the values for each variable

and determine if the left and right sides of the equation are equal (or not). If they are not,

then (x, y) is not on the agent’s line-of-sight path.

cisc3665-fall2011-sklar-lecIII.3 8

breadcrumbs

• Some games have players leave breadcrumbs in the environment, like a “trail” showing

where the agent has been.

• This is handy in environments where the obstacles are static (or slow-moving).

• Every time an agent successfully moves through a cell, it leaves a “breadcrumb”. Other

agents can later sense these breadcrumbs and “pick up the scent” of a viable trail—by

following the breadcrumbs from one cell to another.

• Agents do this by sensing breadcrumbs in adjacent cells and using these to prioritize which

cell to visit next.

• The lead (first) agent still has to perform pathfinding (as on earlier slides), but subsequent

agents that pick up the trail can avoid this computation and follow the old path.

• Of course, this only works when the subsequent agents have a destination that is the same

as (or along the way to) the lead agent’s destination.

• In dynamic environments, the breadcrumbs can “decay” over time, fading from one

timestep in the game to another, until they can no longer be sensed if too much time has

passed since they were “dropped”.

cisc3665-fall2011-sklar-lecIII.3 9

path following using terrain analysis

• One method of path following is for the agent to perform terrain analysis.

• With this method, the agent maintains a map of the space in its memory. This map is a

2-dimensional grid, where each entry in the grid corresponds to a cell in the agent’s world

that the agent can move to. Initially, all the entries in the grid are set to 0 (“unsensed”).

• As the agent senses its environment and moves around, it fills in the grid with information

about the cells it senses. The agent might store 1 in empty cells and −1 in cells that

contain obstacles. In the figure below, the agent starts in the location shown and senses

its immediate neighbors.

1

(dest.x,dest.y)

(pos.x,pos.y)

0
0
0
0
0
0
0
0

0 0 0 0 0

0 0 000 0 0 0 0 0
0
0

0
0

0
0

0 0
0 0

0 0 0 0

0

00 0 0
0
0
00

0
00

0
0
0

0
0
0

0
0

0
0 0

0
0

0

0

0 0 0
0

0
0

0 0
000

0 0
0
0 0

00
0 0

0 0 0

000000000000
0

0
0 0 0 0 0 0 0 0 0 0 0

0000000000
0 0 0 0 0 0 0 0 0 0 0 0

1 1 1

1

1

1

1

cisc3665-fall2011-sklar-lecIII.3 10

• The agent begins pathfinding by looking at its 2D grid for entries corresponding to its 8

adjacent cells. If the agent reads a 0 from its 2D grid, then it needs to sense the

corresponding cell in its environment and update the 2D grid accordingly. When all cells

surrounding the current cell have been sensed, then the agent can choose its move—by

selecting one of the empty cells (marked by 1).

• An intelligent agent will pick the empty cell that is closest to its line-of-sight, from the

current position to the destination. In fact, the agent can “mark” the 2D grid by

determining which cells are closest to the line-of-sight and storing higher values in the

grid—e.g., putting 3 in cells that are along the line-of-sight (but are not the destination).

3

(dest.x,dest.y)

(pos.x,pos.y)

0
0
0
0
0
0
0
0

0 0 0 0 0

0 0 000 0 0 0 0 0
0
0

0
0

0
0

0 0
0 0

0 0 0 0

0

00 0 0
0
0
00

0
00

0
0
0

0
0
0

0
0

0
0 0

0
0

0

0

0 0 0
0

0
0

0 0
000

0 0
0
0 0

00
0 0

0 0 0

000000000000
0

0
0 0 0 0 0 0 0 0 0 0 0

0000000000
0 0 0 0 0 0 0 0 0 0 0 0

1 1 1

11

1 1

Note that the agent does not

mark all the cells along its line-

of-sight—only the ones that it

has sensed and knows that there

are no obstacles there.

• Then the agent’s choice of move is merely to find the largest value amongst its 8 neighbor

cells and move there.

cisc3665-fall2011-sklar-lecIII.3 11

• As the agent moves, it senses its neighboring cells and updates its 2D grid.

3

0
0
0
0
0
0
0
0

0 0 0 0 0

0 0 000 0 0 0 0 0
0
0

0
0

0
0

0 0
0 0

0 0 0

0

00 0 0
0
0
00

0
00

0
0
0

0
0
0

0
0

0
0 00

0

0
0

0
0

0 0
000

0 0
0
0 0

00
0 0

0 0 0

000000000000
0

0
0 0 0 0 0 0 0 0 0 0 0

0000000000
0 0 0 0 0 0 0 0 0 0 0 0

1 1 1

11

1 1

1 1

1

12

3

0
0
0
0
0
0
0
0

0 0 0 0

0 0 000 0 0 0 0 0
0
0

0
0

0
0

0 0
0 0

0 0 0

0

00 0 0
0
0
00

0
00

0
0
0

0
0
0

0
0

0
0 00

0

0
0

0

0
000

0 0
0 00
0 0

0 0 0

000000000000
0

0
0 0 0 0 0 0 0 0 0 0 0

0000000000
0 0 0 0 0 0 0 0 0 0 0 0

1 1 1

11

1 1 2

1 1

1

1

1

−1 −1 −1

2

3

0
0
0
0
0
0
0
0

0 0 0

0 0 000 0 0 0 0 0
0
0

0
0

0
0

0 0
0 0

0 0 0

0

0 0 0
0
0
00

0
00

0
0
0

0
0
0

0
0

0
0 00

0

0
0

0
000

0 0
0 00
0 0

0 0 0

000000000000
0

0
0 0 0 0 0 0 0 0 0 0 0

0000000000
0 0 0 0 0 0 0 0 0 0 0 0

1 1 1

11

1 1

1 1

1

1

1

−1 −1 −1

1

12

2

2

• Note that the agents stores a value of 2 in the cells it has already visitied, marking its trail.

• Also notice that “old” values remain in the 2D grid, meaning that the grid acts like the

agent’s memory of where it has explored in its environment.

cisc3665-fall2011-sklar-lecIII.3 12

wall tracing

• Another application of this technique is for a task called wall tracing.

• Here, instead of using the terrain analysis technique for going around obstacles, the agent

uses it for going around the edges of walls. This is a handy method for an agent to find its

way out of a room.

0

0 0 0 0 0
0

0

0

0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0 0 0 0 0 0 0 0 0 0 0 0

0
0

0
0

0

0
0

0

0

0

0 0 0

0

0
0

0 0 0 0

0
0

0
0

0
0

0
0

0 0 0 00 0

0
0

0

0
0
0

0
0
0

0
0

0
0 0

0

0

0 0 0
0

0
00

0
0 0 0 0 0 0 0 0 0 0

00000000
0 0 0 0 0 0 0 0 0

1 1 1

1

1

1

1 1

0

0 0
0

000
0

3

0 0 0 0 0
0

0

0

0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0 0 0 0 0 0 0 0 0 0 0 0

0
0

0
0

0

0
0

0

0

0

0 0 0

0

0
0

0 0 0 0

0
0

0
0

0
0

0
0

0 0 0 00 0

0
0

0

0
0
0

0
0
0

0
0

0
0 0

0

0

0 0 0
0

0
00

0
0 0 0 0 0 0 0 0 0 0

00000000
0 0 0 0 0 0 0 0 0

1 1 1

11

1 1

0

0 0
0

000
0 0 0

0 0 0 0 0
0

0

0

0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0 0 0 0 0 0 0 0 0 0 0 0

0
0

0
0

0

0
0

0

0

0

0 0 0

0

0

0 0 0 0

0
0

0
0

0
0

0
0

0 0 00 0

0
0

0

0
0
0

0
0
0

0
0

0
00

0
0

0
00

0
0 0 0 0 0 0 0 0 0 0

00000000
0 0 0 0 0 0 0 0 0

1 1 1

11

1 1

0

0 0
0

000
0 0

31 1

1

2 −1

cisc3665-fall2011-sklar-lecIII.3 13

waypoint navigation

• One method for navigation environment is to define special locations in the environment

called waypoints (the book calls them nodes). An agent will find a path that goes from

one waypoint to another. The waypoints should be defined so that an agent always has a

line-of-sight from one to another.

• The figure below shows seven waypoints (marked with letters A through G), one inside

each doorway and one inside each room in the environment.

G

A
B

C

EF

D

• Waypoints should be defined so that each waypoint can be seen from at least one other

waypoint.

cisc3665-fall2011-sklar-lecIII.3 14

• The agent can then construct an adjacency matrix indicating which waypoints are

adjacent to each other, which dictates which waytpoint should be visited first when

starting from any other waypoint.

• The table below contains the adjacency matrix for the map on the previous slide. The

table should be read as follows. Each row is labeled with a starting waypoint, and each

column is labeled with an ending waypoint. For example, when starting at waypoint A and

going to waypoint E, the first waypoint that should be visited is B.

A B C D E F G

A - B B B B B B

B A - C D D D D

C B B - D D D D

D B B C - E F F

E D D D D - F F

F E E E E E - G

G F F F F F F -

cisc3665-fall2011-sklar-lecIII.3 15

A*

• A* (pronounced “A-star”) is one of the most popular methods for pathfinding in games

(and in robotics!)

• A* works well with not too, too large a space to traverse.

• Using waypoints helps make a large space tractable.

• Then you can use A* to calculate a path from one waypoint to another.

• The next slide contains the pseudo code for the A* algorithm.

• The “open” list contains the waypoints that need to be searched.

• The “closed” list contains the waypoints that have already been searched.

• The “cost” of going from “this” waypoint to the current waypoint is calculated by adding

the cost of getting to the current waypoint (g) to the estimated cost of going to the next

waytpoint (h). The estimated cost is determined using a heuristic — an educated guess.

• This is the essence of A*: cost = g + h

cisc3665-fall2011-sklar-lecIII.3 16

add starting waypoint to "open" list

while (open list is not empty) {

current waypoint = lowest cost waypoint from open list

if (current waypoint == goal)

done!

else {

remove current waypoint from open list

add current waypoint to closed list

for each waypoint that is adjacent to the current waypoint {

if (this waypoint is not on the open list) and

(this waypoint is not on the closed list) and

(there is no obstacle between current waypoint and

this waypoint) {

add this waypoint to the open list

calculate cost of going to this waypoint from current waypoint

}

}

}

}

cisc3665-fall2011-sklar-lecIII.3 17

• Here is an example:

8
F

G

H J

A

E D

C

B 1

111

1

1 1

1
5 4 3

46

7 6 5

6 5 4

57

7 6

We start at the waypoint marked A. The

destination is the filled black circle near the upper

right corner. Each of the waypoints adjacent to

A is evaluated.

• To illustrate the computation, each waypoint’s upper right corner contains the cost to get

from the current waypoint to the waypoint being evaluated. This is g. This is 1 for the

waypoints that could be visited on the first step, i.e., one step from A.

• Each waypoint’s lower right corner contains the estimated cost to get from the waypoint

being evaluated to the destination. This is h.

• Each waypoint’s lower left corner contains the total cost, g + h.

cisc3665-fall2011-sklar-lecIII.3 18

• So, the first pass through the A* algorithm on this example goes like this:

add A to the open list

set the current waypoint to A (only waypoint on open list)

A is not the goal so:

remove A from the open list ()

add A to the closed list (A)

add B, C, D, E, F, G, H, and J to the open list

• The second pass goes like this:

2

F

G

H J

A

E D

C

B2
4

4
2

6

6
K

35

set the current waypoint to B

(lowest cost waypoint on

open list)

B is not the goal so:

remove B from the open list

add B to the closed list (A,B)

add K to the open list

(C,D,E,F,G,H,J,K)

cisc3665-fall2011-sklar-lecIII.3 19

• The third pass goes like this:

6

F

G

H J

A

E D

C

B

4
K3

7
3

3

3

M

N

P

3L3
5 7 8 5

7 4

3

8 4

set the current waypoint to K

(lowest cost waypoint on

open list)

K is not the goal so:

remove K from the open list

add K to the closed list (A,B,K)

add L, M, N and P to the open list

(C,D,E,F,G,H,J,L,M,N,P)

• The fourth pass goes like this:

Q

F

G

H J

A

E D

C

B

K 4

M

N

P

L
8 4

4
26

set the current waypoint to P

(lowest cost waypoint on

open list)

P is not the goal so:

remove P from the open list

add P to the closed list (A,B,K,P)

add Q to the open list

(C,D,E,F,G,H,J,L,M,N,Q)

cisc3665-fall2011-sklar-lecIII.3 20

• The fifth pass goes like this:

G

H J

A

E D

C

B

K

M

N

P

L

Q

5
16

R

F

S
5

5
0 set the current waypoint to Q

(lowest cost waypoint on

open list)

Q is not the goal so:

remove Q from the open list

add Q to the closed list (A,B,K,P,Q)

add R and S to the open list

(C,D,E,F,G,H,J,L,M,N,R,S)

• The sixth pass goes like this:

F

G

H J

A

E D

C

B

K

M

N

P

L

Q

RS
set the current waypoint to S

(lowest cost waypoint on

open list)

S is the goal so we’re done!

cisc3665-fall2011-sklar-lecIII.3 21

to do

• work on homework assignment for unit III, which is due November 7

cisc3665-fall2011-sklar-lecIII.3 22

