
cisc3660
game programming

fall 2012
lecture # II.1

topics:

• event handling

references:

• https://sites.google.com/site/blendergameprojects/,
by Prof Tim Hickey, Brandeis University (http://www.cs.brandeis.edu/~tim)

• Blender Game Engine Overview, User Manual version 2.6
http://wiki.blender.org/index.php/Doc:2.6/Manual/Game_Engine

cisc3660-fall2012-sklar-lecII.1 1

event handling

• events can be caused by the user in an interactive environment

• events can also be caused by activity in a virtual world

• an event handler is the code that gets executed when an event is detected

• recall that when we learned about events in JavaScript, we had to do two things:

– define an event handler
in JavaScript, this is a function defintion like this:
function FUNCTION_NAME (...) { ... }

– associate the event handler with the object in the interface/environment, so that the
event handler is triggered when the registered event occurs
in JavaScript, this is a call like this:
OBJECT.addEventListener(EVENT, FUNCTION_NAME, ...)

• today we’ll talk about handling events in Blender

cisc3660-fall2012-sklar-lecII.1 2

blender game engine

• the Game Engine aspect of Blender includes the Physics simulator (that we discussed
in the last class) and a Logic Editor that lets us define how the game behaves

• four steps to creating a game:

1. create visual elements (3D models or images, could be rendered objects)

2. use logic editor to create behaviors for the game
can define how user interacts with objects
and how objects interact with each other
and how objects interact with the environment

3. create camera(s) from which to render the scene

4. launch the game (e.g., create a runtime version)

• compnents of game logic

– logic “bricks”

– properties (like variables)

– states (an object property)

cisc3660-fall2012-sklar-lecII.1 3

game engine elements

(1) game logic (2) blender game (3) game menu (4) logic editor panel (5) properties

cisc3660-fall2012-sklar-lecII.1 4

logic editor

• elements of game logic are defined in Blender as “logic bricks”

• three types of bricks:

– sensors — listen for events

– controllers — handle data provided by events

– actuators — perform actions in response to events

(1) game property area (2) object name (3) links
(4) sensor area (5) controller area (6) actuator area

cisc3660-fall2012-sklar-lecII.1 5

sensors

• sensors trigger game logic to be activated

• produce output when an event occurs

• sample events: user presses a key or two objects collide

• output is a “pulse” that gets sent to controller(s) connected to the sensor

• a sensor brick looks like this:

cisc3660-fall2012-sklar-lecII.1 6

• types of sensors:
(from http://wiki.blender.org/index.php/Doc:2.6/Manual/Game_Engine/Logic/Sensors)
Actuator Detects when a particular actuator receives an activation pulse
Always Gives a continuous output signal at regular intervals
Collision Detects collisions between objects or materials
Delay Delays output by a specified number of logic ticks
Joystick Detects movement of specified joystick controls
Keyboard Detects keyboard input
Message Detects either text messages or property values
Mouse Detects mouse events
Near Detects objects that move to within a specific distance of themselves
Property Detects changes in the properties of its owner object
Radar Detects objects that move to within a specific distance of themselves,

within an angle from an axis
Random Generates random pulses
Ray Shoots a ray in the direction of an axis and detects hits
Touch Detects when the object is in contact with another object

cisc3660-fall2012-sklar-lecII.1 7

• advanced sensor options:

– “true” level trigger — causes the sensor to fire “true” pulses, to the attached
controller(s)

– “false” level trigger — causes the sensor to fire “false” pulses, to the attached
controller(s)

– repeating trigger — repeats pulse, based on defined frequency, in units of 60 Hz (every
60th of a second)

cisc3660-fall2012-sklar-lecII.1 8

• sample keyboard sensor

cisc3660-fall2012-sklar-lecII.1 9

controllers

• collect data received by sensors

• also can operate based on a specific state

• these are like conditional statements in Java

• a controller brick looks like this:

cisc3660-fall2012-sklar-lecII.1 10

• types of controllers:
(from http://wiki.blender.org/index.php/Doc:2.6/Manual/Game_Engine/Logic/Controllers)

– AND

– OR

– XOR

– NAND

– NOR

– XNOR

– Expression

– Python

• controller responses based on logic operations on sensor pulse inputs:

number of controllers
true sensors AND OR XOR NAND NOR XNOR

zero false false false true true true
one (not all) false true true true false false

some (not all) false true false true false true
all true true false false false true

cisc3660-fall2012-sklar-lecII.1 11

actuators

• actuators perform actions

• an actuator brick looks like this:

cisc3660-fall2012-sklar-lecII.1 12

• types of actions:
(from http://wiki.blender.org/index.php/Doc:2.6/Manual/Game_Engine/Logic/Actuators)

Action Handles armature actions.
Camera Has options to follow objects smoothly, primarily for camera objects.
Constraint Constraints are used to limit objects locations, distance, or rotation.
Edit Object Edits the objects mesh, adds objects, or destroys them.
Filter 2D Filters for special effects like sepia colors or blur.
Game Handles the entire game and can do things as restart, quit, load, and save.
Message Sends messages, which can be received by other objects to activate them.
Motion Sets object into motion and/or rotation.
Parent Can set a parent to the object, or unparent it.
Property Manipulates the objects properties, like assigning, adding, or copying.
Random Creates random values which can be stored in properties.
Scene Manage the scenes in your .blend file. These can be used as levels.
Sound Used to play sounds in the game.
State Changes states of the object.
Steering Provides pathfinding options for the object.
Visibility Changes visibility of the object.

cisc3660-fall2012-sklar-lecII.1 13

• sample actuator for simple motion — adjust dx, dy, dz for position and rotation:

• sample actuator for servo motion — adjust forces applied to object:

cisc3660-fall2012-sklar-lecII.1 14

example code: moving cube

cisc3660-fall2012-sklar-lecII.1 15

example to try

• from https://sites.google.com/site/blendergameprojects/,
by Prof Tim Hickey, Brandeis University (http://www.cs.brandeis.edu/~tim)

• Skyracer 2.61
Designed to let you experiment with the motion actuator for avatars.
This game kit provides you with a vehicle that can be controlled by WASD commands,
and you can experiment with the motion actuator panel to give it a better feel. You could
also add more jumps, other racetracks, etc.

cisc3660-fall2012-sklar-lecII.1 16

