today’s topics:

- finish up adversarial search
- neural networks
Horizon effects

- How do we know when to stop searching?
- What looks like a very good position for MAX might be a very bad position just over the horizon.
- Stop at quiescent nodes (value is the same as it would be if you looked ahead a couple of moves).
- Can be exploited by opponents; pushing moves back behind the horizon.
- A similar problem occurs because we assume that players always make their best move:
 - “Bad” moves can mislead a minimax-style player.
Games of chance

- How do we handle dice games?
- A neat trick is to model this as another player DICE.
- We back up values in the usual way, maximising for MAX and minimising for MIN.
- For DICE moves, we back up the expected (weighted average) of the moves.
- For a single die, the weight is 1/6.
- For more complex situations we use whatever probability distribution is indicated.
Summary: adversarial search

- We have looked at game playing as adversarial state-space search.
- Minimax search is the basic technique for finding the best move.
- Alpha/beta search gives greater efficiency.
- Games of chance can be handled by adding in the random player DICE.
Neural Networks: Introduction

• Now we will look at neural networks, so called because they mimic the structure of the brain.
• However, they don’t have to be viewed in this way.
• We will start by thinking of them as an implementation of the kind of stimulus-response agents we looked at in the last lecture.
• They also provide us with our first taste of learning.
• The learning angle means we don’t have to figure out the model parameters for ourselves.
Networks for Stimulus-Response

• Production systems can be easily implemented as computer programs.
• They may also be implemented directly as electronic circuits, as combinations of AND, OR, and NOT gates.
• (Or as simulations of electronic circuits.)
• One useful kind of circuit is built of elements whose output is a nonlinear function of a weighted combinations of its inputs.
• One kind of such unit is a *threshold logic unit* (TLU).
• This computes a weighted sum of its inputs, compares this to a threshold, and outputs 1 if the threshold is exceeded, 0 otherwise.
The Boolean functions that can be computed using a TLU are called \textit{linearly separable} functions.

\[f = 1 \text{ if } \sum_{i=1}^{n} x_i w_i \geq \theta \]
\[= 0 \text{ otherwise} \]
• We can use TLUs to implement some Boolean functions, for instance a simple conjunction:

\[x_1 x_2 x_3 \]

but we can’t implement an exclusive-OR this way.
• We can implement the kind of function used for boundary following:

\[x_1 \overline{x_2} = (s_2 + s_3)(s_4 + s_5) \]
\[= (s_2 + s_3)s_4s_5 \]

as the figure overleaf

• If you don’t see why, figure out what the weighted sum is for different combinations of sensor readings.
\begin{center}
\begin{tikzpicture}
\node (0.5) at (0,0) {0.5};
\node (s2) at (-1,1) {s_2};
\node (s3) at (-1,0) {s_3};
\node (s4) at (-1,-1) {s_4};
\node (s5) at (-1,-2) {s_5};
\draw[->] (0.5) -- node[above] {1} (s2);
\draw[->] (0.5) -- node[above] {1} (s3);
\draw[->] (0.5) -- node[below] {-2} (s4);
\draw[->] (0.5) -- node[below] {-2} (s5);
\draw[->] (0.5) -- node[right] {$x_1 \bar{x}_2$} (0.5 -| 1,0);
\end{tikzpicture}
\end{center}

© 1998 Morgan Kaufman Publishers
• When we have a simple problem, it is possible that a single TLU can compute the right action.
• For this to happen we need there to be only two possible actions.
• For more complex problems, we need a network of TLUs.
• These are often called *neural networks* because they have some similarity to the networks of neurons from which the brain is constructed.
• We can use such a network to implement a T-R program.
Inhibit TISA unit

Squelch

Test Act
• This network implements a set of production rules.
• The input to each unit on the left is the 1 or 0 of the condition.
• (This might be computed from the s_i by another circuit.)
• Each rule is a Test, Inhibit, Squelch, Act (TISA) circuit:
 – One TLU computes a conjunction.
 – The other computes a disjunction.
• Inhibit is 0 when no rules above have a true condition.
• Test is 1 if the condition is true.
• If Test is 1 and Inhibit is 0, Act is 1.
• If either Test is 1 or Inhibit is 1 then Squelch is 1.
• If Squelch is 1 then every TISA below is Inhibited.
Learning in neural networks

• So far we have assumed that the mapping between stimulus and response was programmed by the agent designer.
• That is not always convenient or possible.
• When it isn’t, then it is possible to *learn* the right mapping.
• We will start to examine one way of doing that in this lecture.
• We will look at the case of learning the mapping for a single TLU.
In brief, the learning procedure is as follows.

- We start with some set of weights:
 - random;
 - uniform
- We then run a set of inputs, and look at the outputs.
- If they don’t match, we alter the weights.
- We keep learning until the weights are right.
• Remember the set up we had before.
• We have a feature vector X, which maps to a particular action a.
• Now consider that we have a set of these Θ.
• Every element of Θ is an X with a corresponding a.
• This is a training set, and the set A of all a are called the classes or labels.
• The learning problem here is to find a way of describing the mapping from each member of Θ to the appropriate member of A.
• We want to find a function $f(X)$ which is “acceptable”.
• That is it produces an action which agrees with the examples for as many members of the training set as possible.
• Because we have a set of examples to learn from, we call this supervised learning.
Learning in a single TLU

- We train a TLU by adjusting the input weights.
- We assume that the vector X is numerical so that a weighted sum makes sense.
- The set of weights w_1, w_2, \ldots, w_n is denoted by W.
- The threshold is written as θ, so:
 - Output is 1 if $s = X \cdot W > \theta$
 - Output is 0 otherwise
- $X \cdot W$ is just a way of writing $x_1 w_1 + x_2 w_2 + \ldots + x_n w_n$
• A TLU divides the space of feature vectors Θ:

Equation of hyperplane:
$$X \cdot W - \theta = 0$$

- $X \cdot W - \theta > 0$ on this side
- $X \cdot W - \theta < 0$ on this side

Unit vector normal to hyperplane $\frac{W}{|W|}$

Origin

© 1998 Morgan Kaufman Publishers
• In two dimensions, the TLU defines a boundary between two parts of a plane (as in the picture).
• In three dimensions, the TLU defines a plane which separates two parts of the space.
• In higher-dimension spaces the boundary defined by the TLU is a hyperplane.
• Whatever it is, it separates:
 \[X \cdot W - \theta > 0 \]
 from
 \[X \cdot W - \theta < 0 \]
• Changing θ moves the boundary relative to the origin.
• Changing W alters the orientation of the boundary.
• Following the textbook we will assume that:
 \[\theta = 0 \]

• This simplifies the subsequent maths :-)
• Arbitrary thresholds can be obtained by adding in an extra weight $n + 1$ which is $-\theta$.
• The $n + 1$th element of the input vector is always 1.
• So, we don’t restrict ourselves by making this assumption.
Summary: Neural Networks

- So, we introduced neural networks.
- We first considered them as an implementation of stimulus-response agents.
- In this incarnation we adjust the weights by hand.
- We also started thinking about how to learn the weights automatically.
- We will finish this line of work off next lecture.