
cis32-ai — lecture # 12 — mon-13-mar-2006

today’s topics:

• learning in neural networks

• learning in state space

cis32-spring2006-sklar-lec12 1

Learning in neural networks

• So far we have assumed that the mapping between stimulus and response was

programmed by the agent designer.

• That is not always convenient or possible.

• When it isn’t, then it is possible to learn the right mapping.

• We will start to examine one way of doing that in this lecture.

• We will look at the case of learning the mapping for a single TLU.

cis32-spring2006-sklar-lec12 2

• In brief, the learning procedure is as follows.

• We start with some set of weights:

– random;

– uniform

• We then run a set of inputs, and look at the outputs.

• If they don’t match, we alter the weights.

• We keep learning until the weights are right.

cis32-spring2006-sklar-lec12 3

• Remember the set up we had before.

• We have a feature vector X , which maps to a particular action a.

Perceptual
processing

Action
function

Sensory
input Action

Feature
vector,X

Next to wall

In a corner

Designer’s intended
meanings:

0
1
1

1
1

© 1998 Morgan Kaufmann Publishers

cis32-spring2006-sklar-lec12 4

• Now consider that we have a set of these Θ.

• Every element of Θ is an X with a corresponding a.

• This is a training set, and the set A of all a are called the classes or labels.

• The learning problem here is to find a way of describing the mapping from each member of

Θ to the appropriate member of A.

• We want to find a function f(X) which is “acceptable”.

• That is it produces an action which agrees with the examples for as many members of the

training set as possible.

• Because we have a set of examples to learn from, we call this

supervised learning.

cis32-spring2006-sklar-lec12 5

Learning in a single TLU

• We train a TLU by adjusting the input weights.

• We assume that the vector X is numerical so that a weighted sum makes sense.

• The set of weights w1, w2, . . . , wn is denoted by W .

• The threshold is written as θ, so:

– Output is 1 if

s = X · W > θ

– Output is 0 otherwise

• X · W is just a way of writing x1w1 + x2w2 + . . . + xnwn

cis32-spring2006-sklar-lec12 6

• A TLU divides the space of feature vectors Θ:

Equation of hyperplane:
X • W – θ = 0

X • W – θ < 0
on this side

X • W – θ > 0
on this side

Origin

X

Unit vector normal
to hyperplane|W|

W

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec12 7

• In two dimensions, the TLU defines a boundary between two parts of a plane (as in the

picture).

• In three dimensions, the TLU defines a plane which separates two parts of the space.

• In higher-dimension spaces the boundary defined by the TLU is a hyperplane.

• Whatever it is, it separates:

X · W − θ > 0

from

X · W − θ < 0

cis32-spring2006-sklar-lec12 8

• Changing θ moves the boundary relative to the origin.

• Changing W alters the orientation of the boundary.

• Following the textbook we will assume that:

θ = 0

• This simplifies the subsequent maths :-)

• Arbitrary thresholds can be obtained by adding in an extra weight n + 1 which is −θ.

• The n + 1th element of the input vector is always 1.

• So, we don’t restrict ourselves by making this assumption.

cis32-spring2006-sklar-lec12 9

Summary: Neural Networks

• So, we introduced neural networks.

• We first considered them as an implementation of stimulus-response agents.

• In this incarnation we adjust the weights by hand.

• We also started thinking about how to learn the weights automatically.

• We will finish this line of work off next lecture.

cis32-spring2006-sklar-lec12 10

Learning in State Space: Overview

• The last few lectures have considered heuristic search.

• Obviously the performance of search techniques depends a lot on the heuristic.

• Sometimes we can work out what good heuristics are from our knowledge of the domain.

• When we can’t, we can get an agent to learn the right heuristic.

• This lecture looks at techniques for learning such heuristics

• These are all types of reinforcement learning.

cis32-spring2006-sklar-lec12 11

Learning heuristics

• We will start by assuming that the agent knows the results and costs of each operation.

• We will also assume that it can build the whole search tree.

• This is just what we did for previous searches.

• We then set h(n) = 0 for all n and run an A* search.

• When the agent has expanded node ni to give a set of children δ(ni), it updates its h(ni)

to be:

h(ni) := min
nj∈δ(ni)

[h(nj) + c(ni, nj)]

where c(ni, nj) is the cost of moving from ni to nj.

• We further assume that the agent can recognise the goal state and knows that h(goal) is

0.

cis32-spring2006-sklar-lec12 12

• This won’t do much for the agent the first time–it is just uniform cost search.

• However, subsequent searches will ”zoom in” on the right solution faster and faster.

• This happens as the hT (n) values propagate back from the goal.

• (There are few enough values that these can be stored in a table.)

• Each run propagates the true cost of getting to the goal further back through the search.

• Eventually, the minimal cost path can just be read off the tree.

cis32-spring2006-sklar-lec12 13

Learning without a model of action

• As described this kind of search is a ”thought experiment” that an agent carries out.

• In the case of the navigating robot, it is planning its route across the grid.

• Alternatively it would be possible for the agent to actually carry out the operations to see

what happens.

• In the case of the robot it could move through the room randomly at first, working out

over a number of runs what the outcomes of actions were, and which were most useful at

which point.

• (To do this, the agent will have to build a model of the state space in its ”head”).

cis32-spring2006-sklar-lec12 14

Boundary

Solid
object

The robot senses whether
the eight surrounding cells
are free for it to occupy

A robot starting here will
go clockwise around the
inside of the outer boundary

A robot starting here will go
counterclockwise around the
outside boundary of the object

s1 s2 s3

s8 s4

s7 s6 s5

© 1998 Morgan Kaufmann Publishers

cis32-spring2006-sklar-lec12 15

• What we assume is that:

– The agent can distinguish the states it visits (and name them).

– The agent knows how much actions cost once it has taken them.

• The process starts at the start state s0.

• The agent then takes an action (maybe at random), and moves to another state. And

repeats.

• As it visits each state, it names it and updates the heuristic value of this state as:

h(ni) := [h(nj) + c(ni, nj)]

where ni is the node in which an action is taken, nj is the node the action takes the agent

to, and c(ni, nj) is the cost of the action.

• h(nj) is zero if the node hasn’t been reached before.

cis32-spring2006-sklar-lec12 16

• Whenever the agent has to choose an action a, it chooses it by:

a = argmina [h(σ(ni, a)) + c(ni, σ(ni, a))]

where σ(ni, a) is the state reached from ni after carrying out a.

• As before, the estimated minimum cost path to the goal is built up over repeated runs.

• However, allowing some randomness in the choice of actions increases the chance that the

“estimated minimum cost path” really is the best path.

cis32-spring2006-sklar-lec12 17

Learning without a search graph

• For many interesting problems, it is not possible to store all the states/nodes and build the

entire search graph.

• Provided we have a model of the effects of actions, we can still search with an evaluation

function.

• We start by assembling a heuristic as a linear combination of some set of plausible

functions.

• For the 8-puzzle these might be:

– W (n) : number of tiles out of place.

– P (n) : sum of distance each tile is from home.

• Plus any additional functions you can think of.

cis32-spring2006-sklar-lec12 18

• Potentially you could consider all the things it is possible to measure.

• Then:

h(n) = w1W (n) + w2P (n) + . . .

• We then learn which weights are best.

• One way to do this is as follows:

• After expanding ni to δ(ni) we adjust the weights so that:

h(ni) := h(ni) + β





 min
nj∈δ(ni)

[h(nj) + c(ni, nj)] − h(ni)







• We modify h(ni) by adding some proportion of (controlled by β) of the difference between

what we thought h(ni) was before the expansion, and what we think it is after.

cis32-spring2006-sklar-lec12 19

• We can rewrite this as:

h(ni) := (1 − β)h(ni) + β min
nj∈δ(ni)

[h(nj) + c(ni, nj)]

• β controls how fast the agent learns—how much weight we give to the new estimate of

the heuristic.

• If β = 0 there is no adjustment.

• If β = 1, h(ni) is thrown away immediately.

• Low values of β lead to slow learning, and high values mean that performance is erratic.

• Note that this temporal difference approach can also work without a model of the effects

of actions (with suitable modification).

cis32-spring2006-sklar-lec12 20

Rewards not goals

• For many tasks agents don’t have short term goals, but instead accrue rewards over a

period of time.

• Instead of a plan, we want a policy π which says how the agent should act over time.

• Typically this is expressed as what action should be carried out in a given state.

• We express the reward an agent gets as r(ni, a), and if doing a in ni takes the agent to

nj, then:

r(ni, a) = −c(ni, nj) + ρ(nj)

where ρ(nj) is a reward for being in state nj.

• We want an optimal policy π∗ which maximises the (discounted) reward at every node.

cis32-spring2006-sklar-lec12 21

• One way to find the optimum policy is by searching through all possible policies.

• Start with a random policy and calculate its reward.

• Then guess another policy and see if it has a better reward (kind of slow).

• Better would be to tweak the policy by swapping some a in ni for an a′ with a higher

r(ni, a
′).

• Again there is no guarantee of success.

• But there are better approaches.

cis32-spring2006-sklar-lec12 22

• Given a policy π, we can compute the value of each node—the reward the agent will get if

it starts at that node and follows the policy.

• If the agent is at ni and follows π to nj then the agent will get reward:

V π(ni) = r(ni, π(ni)) + γV π(nj)

where γ is the discount factor (think of it as the opposite of bank interest).

• The optimum policy then gives us the action that maximises this reward:

V π∗(ni) = max
a

[

r(ni, a) + γV π∗(nj)
]

cis32-spring2006-sklar-lec12 23

• If we knew what the values of the nodes were under π∗, then we could easily compute the

optimal policy:

π∗(ni) = argmaxa

[

r(ni, a) + γV π∗(nj)
]

• The problem is that we don’t know these values.

• But we can find them out using value iteration.

• We start by guessing (randomly is fine) an estimated value V (n) for each node.

cis32-spring2006-sklar-lec12 24

• Then when we are at ni we pick the action to maximise:

argmaxa [r(ni, a) + γV (nj)]

that is the best thing given what we currently know.

• We then update V (ni) by:

V (ni) := (1 − β)V (ni) + β [r(ni, a), γV (nj)]

• Progressive iterations of this calculation make V (n) a closer and closer approximation to

V π∗(ni).

• Intuitively this is because we replace the estimate with the actual reward we get for the

next state (and the next state and the next state).

cis32-spring2006-sklar-lec12 25

Summary

• This lecture has looked at a number of approaches to learning heuristic functions.

• We started assuming that the agent knew everything but the heuristic, and progressively

relaxed assumptions.

• This created a battery of reinforcement learning methods that can be applied in a wide

variety of situations.

• These models also tie learning and planning together very closely, and we will revisit them

as planning models later in the course.

cis32-spring2006-sklar-lec12 26

