cis32-ai — lecture # 13 — wed-15-mar-2006

today'’s topics:

e evolutionary computing

cis32-spring2006-sklar-lec13 1

Metaphors from biology

e Nature is good at evolving robust agents.

e Can we borrow such mechanisms to build artifical agents?
e It turns out that we can.

e We will look at two models:

— Genetic algorithms

— Genetic programming

cis32-spring2006-sklar-lec13 2

Genetic algorithms

e The basic approach is:

genetic-algorithm(population,fitness)

{

repeat

{

parents := selection(population,fitness)
population := reproduction(parents)

+

until (enough fit individuals)
return(fittest individual)

cis32-spring2006-sklar-lec13

e This is *just* a fancy way of doing search.
e We code some part of the agent (e.g. action selection function) and decide how to do:

— selection: and

— reproduction.
on it.

e When we have a bunch of individuals (as we typically do), each individual represents a
state in the state-space of possible individuals.

e Establishing and evaluating a population is a (massively) parallel search though this space.

cis32-spring2006-sklar-lec13 4

e To use the approach we have to instantiate:

— What is the fitness function?

— How is an individual represented?
— How are individuals selected?

— How do individuals reproduce?

e While these are to some extent domain dependent, we will look at some typical ways of
doing this.

cis32-spring2006-sklar-lec13 5

Fitness function

e The fitness function is the most domain dependent item.
e It is a function that takes an individual as an argument and returns a real number.
e In the example of our wall following robot a function could be:

— The average number of moves out of n for which the robot makes the right action
selection.

— The average number of moves out of n for which the robot is adjacent to the boundary.

e Fitness functions often take time to evaluate.

cis32-spring2006-sklar-lec13 6

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec13 7

Representation

e The classic representation is one in which features are coded as a binary “chromosome”.
e (i.e. we code a sequence like 01110110 rather than AATGTCAT.)

e In our robot example, we could code up the action representation as a list of
condition /action pairs:

— One possible combination of sensor readings; followed by

— The appropriate action.
e Sensor readings could be strings n, ne, ..., nw.

e Actions could be two digit binary numbers, 00 = north etc.

cis32-spring2006-sklar-lec13 8

Selection

e Selection is usually a two stage process.
e First we limit the population:

— Cull unfit indivduals to limit the population size.
e Then we select individuals to breed:

— Random selection weighted towards fit individuals;

— With replacement (so very fit individuals can breed several times).

cis32-spring2006-sklar-lec13 9

Reproduction

e Two basic parts to reproduction:

— Crossover: and
— Mutation.

e First take two parents P1 and P2, and pick a number n between 1 and N = length of
“chromosome” .

e Create two “children”, C1 and C2.
e C1 is the first n bits of P1 and the last N — n bits of P2.
e C2 is the first n bits of P2 and the last N — n bits of P1.

cis32-spring2006-sklar-lec13 10

e Cross-over is analagous to state-space transitions in state-space search.

e Taking fit individuals and combining their features is a form of best-first search.
e It makes small “hill climbing” steps up the fitness function.

e However it can get stuck in local maxima.

e Mutation is a way of “jumping” to new areas of search space.

e We “mutate” random bits by flipping them.

cis32-spring2006-sklar-lec13 11

e Again we have a lot of possible parameters to play with:

— Fitness rating;

— Selection probability;
— Mutation rate;

— Crossover point;

— etc.
e As ever it is a black art choosing what these should be. ..

e “neural networks are the second-best way of doing just about anything, and genetic
algorithms are the third” (Russell and Norvig).

cis32-spring2006-sklar-lec13 12

Genetic programming

e Genetic algorithms only allow us to evolve some part of the agent program.
e We need to code up the “chromosome” and decode to get the agent itself.
e However, we can do evolution on more complex objects.

e In genetic programming we do evolution on programs themselves.

cis32-spring2006-sklar-lec13 13

e We can't get completely away from some representation:

© 1998 Morgan Kaufman Publishers

e However, in a suitable language (Lisp) we can execute such functions directly.

cis32-spring2006-sklar-lec13 14

e Other languages will need a little translation.

o Let's look at how GP can be used to evolve the wall following robot.

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec13 15

e We build the program up from four primitive functions:

1. AND(x, y) = 0 if x = 0; else y
2. 0R(x, y) =1 if x = 1; else y
3. NOT(x) = 0 if x = 1; else 1
4. IF(x, y, z) =y if x = 1; else z
and four actions:
1. north move one cell up the grid
. east move one cell right in the grid

2
3. south move one cell down the grid
4

. west move one cell left the grid

cis32-spring2006-sklar-lec13 16

Note

We must ensure that all expressions and sub-expressions have values for all possible
arguments, or terminate the program.

This ensures that any tree constructed so a function is correctly formed will be an
executable program.

Even if the program is executable, it may not produce “sensible” output.

It may divide by zero, or generate a negative number where only a positive number
makes sense (as when setting a price).

So we always need to have some kind of error handling to deal with the output of
individual programs..

cis32-spring2006-sklar-lec13 17

Reproduction

e The basic way we do GP is like GA.
e We have a fitness function,

e Do selection of the most fit,

e Breed them.

e But how do we breed programs?

cis32-spring2006-sklar-lec13 18

Randomly chosen
crossover points

Mother program Father program Child program

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec13

19

Before we start

e To give us an idea of what we are looking for, the following slide gives an example
program in the GP tree-format.

e This program (check it) implements the same wall following program that we looked at in
the “stimulus response” lecture.

e This shows that the GP-format is somewhat clumsy.

e However, as we shall see, this program is relatively compact when compared with the
programs that will be generated by GP.

cis32-spring2006-sklar-lec13 20

(17
(o (oo (17
ORG) (o (Goun) O
ORORONGORC) (0 (vest)
ORONONGORC) Cront)
ORORO

(I'F (AND (OR (n) (ne)) (NOT (e)))
(east)
(I'F (AND (OR (e) (se)) (NOT (s)))
(sout h)
(IF (AND (OR (s) (sw)) (NOT (w)))
(west)

(north))))

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec13 21

To evolve, perchance to follow walls

e We start with 5000 random programs.

e Fitness is evaluated by running on the task.

e Run the program 60 times and count the number of cells next to the wall visited.
e Worst possible program gets 0.

e Best possible program gets 32.

e Do 10 runs from random start points.

e [otal count is the fitness.

cis32-spring2006-sklar-lec13 22

e Then we need to breed.
e Take 500 programs and add them to the next generation.
e Choose them by tournament selection:

— pick 7 at random;

— add the most fit to the next generation.

e Then create 4500 children into the next generation—parents chosen by tournament
selection.

e Mutate (?) by replacing a randomly chosen subtree with a random subtree.

cis32-spring2006-sklar-lec13 23

Generation 0

The most fit member of the randomly generated initial programs has a fitness of 92,
and has the kind of behaviour shown below.

ol

The program itself is given in the next slide.

cis32-spring2006-sklar-lec13 24

cis32-spring2006-sklar-lec13

(AITD (ITOT (ITOT (IF (IF

(R

(10T

(IOT (ow))

(IF
(IF
(IF

el loorth) (easthl
fwe=zt) (0} (=zouth))

(owh foe) (whh

(ITOT (=wihl

(IMOT foorthlddhiydad

(IF (CRE (MOT (AMD (IF {=w) inorth) (oe))
(BID {=outhy (1iid)
(OR (OR (10T (=1
(OF. (=) (el
(BTN (IF {west)ioe) (=zel)
(IF (13 feiieliill
(OR (MMOT (AT (ITOT (pedhd (IF i{eaztii=binoiiid
(OR (ITOT (IF (owl ieast) (=)
(AN (IF (w) izw) (l)}
(OR (=zwy (owlhh
(OR (IMMOT (IF (OF (o) fwyl
(OF (0} (=e))
(OR (1) {easthd n
(O (RD (OR (1) (nebd
(AMD (ITW) (east)
(IF (IMMOT fwest))
(AITD {west) (esth)
(IF (1l {omorthl (wiitiihhy

25

Generation 2

The most fit member of generation 2 has fitness 117.

>

1 1 (NOT (AND (I'F (ne)
(IF (se)(south)(east))
(north))

(NOT (NOT (e)))))

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec13 26

Generation 6

The most fit member of generation 6 has fitness 163.

Iy e

The program follows the wall perfectly, but gets stuck in the bottom righthand corner.

cis32-spring2006-sklar-lec13 27

the best program from generation 6.

(AITD (ITOT (IOT (IF (IF

(ITOT
(IF (OR (1TOT (4D

(AITD

(O (ITOT (AMD

(OR (IOT
(LD

(OR (1TOT (IF

(OR (AMD

(IF

cis32-spring2006-sklar-lec13

(IOT (ow))

| IF
(IF
(OR (IF

(el inorth) (ea=tii
{weskt) (0} (=outhi!

tow) (nel (wh)

(IOT (=wii}

(IMOT (oorthly biiad
| IF

lzw) (northl (oeld)

(MDD (zouthy (Lliddd
(OF (OF (10T

[OF

(IF
(IF

S=2

teyiey))

(west)(oeh (zei)
(1) (e)iediin

tIoT (nejy (IF {easti{=diniin

(IF
| IF
OR
(OFR
OR
[OR
(OFR

(AT
(IS T
(AITD
| TF

inwi ieasty (23}
(wd (=wy (1))
(2w towhyy b
(o) fwid
(0Y (=ed)
(1l f=astid
(lhined

(ITH) (east)}
{we=st)]
(west) (est)

1y {porthy twhiyadhh

28

Generation 10

The most fit member of generation 10 has fitness of close to the maximum 320.

-

A

Y

The program follows the wall perfectly, heading south until it reaches the boundary.

cis32-spring2006-sklar-lec13 29

the best program from generation 10.

{IF [IF (IF (ae){Q){ne)}
(OB Cze) {aast))
(IF {OR {AND {a) {0}

(e}
(0R {ew} ()3
(AND (NOT (NOT (AND =) {am)’]))
(seld]
(IF {w}
(DR {(north)
(NOT (NOT (g}2)})
(wagtl)
(NOT {NOT (NOT {AND (IF (NOT (scuth})
(ae)
(w))

(HOT (n)3}3}2)

cis32-spring2006-sklar-lec13

30

This graph shows how the fitness of individuals grows quite sharply over the ten

generations.

350
300
250

200 /
150 —
100]

50
0

Fithess

O 1 2 3 4 5 6 7 8 9 10
Generation number

© 1998 Morgan Kaufman Publishers

31

cis32-spring2006-sklar-lec13

Summary

e This lecture has introduced evolutionay computing techniques.
e These are techniques in which (parts of) agents evolve.
e \We looked at two techniques:

— Genetic algorithms

— Genetic programming
e Note that evolutionary techniques are sometimes taken to include neural networks.

e Genetic algorithms and genetic programming give us a way to learn in an unsupervised way.

cis32-spring2006-sklar-lec13 32

