cis32-ai — lecture # 14 — mon-20-mar-2006

today'’s topics:

e knowledge representation

cis32-spring2006-sklar-lec14 1




Introduction

e Using logic is one approach to knowledge representation.

e Another possibility is to design specific mechanisms for representing the kind of knowledge
we need in Al.

e Leads to an area of Al called knowledge representation.

e This lecture will look at some general aspects of knowledge representation, and also the
specific example of production rules.

cis32-spring2006-sklar-lec14 2




The Knowledge Principle

e Ed Feigenbaum:

‘... power exhibited ... is primarily a consequence of the specialist knowledge
employed by the agent and only very secondarily related to ... the power of the
[computer]"

“Our agents must be knowledge rich, even if they are methods poor.”

cis32-spring2006-sklar-lec14 3




The Role of Knowledge

e Knowledge about a domain allows problem solving to be focussed — not necessary to
exhaustively search.

e Explicit representations of knowledge allow a domain expert to understand the knowledge
a system has, add to it, edit it, and so on.
Knowledge engineering.

e Comparatively simple algorithms can be used to reason with the knowledge and derive new
knowledge.

cis32-spring2006-sklar-lec14 4




Knowledge Representation

e Question: How do we represent knowledge in a form amenable to computer manipulation?

e Desirable features of KR scheme:

— representational adequacy;

— inferential adequacy;

— inferential efficiency;

— well-defined syntax & semantics;

— naturalness.

cis32-spring2006-sklar-lec14 5




Representational Adequacy

e A KR scheme must be able to actually represent the knowledge appropriate to our problem.
e Some KR schemes are better at some sorts of knowledge than others.

e [here is no one ideal KR scheme!

cis32-spring2006-sklar-lec14 6




Inferential Adequacy

e KR scheme must allow us to make new inferences from old knowledge.

e |t must make inferences that are:

— sound — the new knowledge actually does follow from the old knowledge;

— complete — it should make all the right inferences.

e Soundness usually easy; completeness very hard!

cis32-spring2006-sklar-lec14 7




e Example. Given knowledge. ..

Michael is a man.
All men are mortal.

the inference

Simon is mortal.

is not sound, whereas
Michael is mortal.

is sound.

cis32-spring2006-sklar-lec14 8




Inferential Efficiency

e A KR scheme should be tractable — make inferences in reasonable (polynomial) time.

e Unfortunately, any KR scheme with interesting expressive power is not going to be
efficient.

e Often, the more general a KR scheme is, the less efficient it is.
e Use KR schemes tailored to problem domain — less general, but more efficient.

e (Any KR scheme with expressive power = first-order logic is undecidable.)

cis32-spring2006-sklar-lec14 9




Syntax and Semantics

e It should be possible to tell:

— whether any construction is “grammatically correct”.

— how to read any particular construction — no ambiguity.

Thus KR scheme should have well defined syntax.

e It should be possible to precisely determine, for any given construction, exactly what its
meaning is.

Thus KR scheme should have well defined semantics.

e Syntax is easy; semantics is hard!

cis32-spring2006-sklar-lec14 10




Naturalness

e Ideally, KR scheme should closely correspond to our way of thinking, reading, and writing.
e Allow knowledge engineer to read & check knowledge base.

e Again, more general a KR scheme is, less likely it is to be readable & understandable.

cis32-spring2006-sklar-lec14 11




Rules

e Knowledge is specified as a collection of production rules.

e Each rule has the form
condition — action

which may be read

if condition then action.
e The condition (antecedent) is a pattern.

e The action (consequent) is an operation to be performed if rule fires.

cis32-spring2006-sklar-lec14 12




e A rule-based (production) system has a working memory of facts against which condition
is matched.

e Action is often a fact to be added to working memory.

e Rule fires if match is successful; Mechanism that fires rules is inference engine.

facts

Working |~ Inference
Memory = Engine

facts
facts rules

@ Rule Base

cis32-spring2006-sklar-lec14 13




e Example rule base:

R3: IF animal has feathers
THEN animal is a bird

R4: IF animal is a bird
THEN animal can fly

R5: IF animal can fly
THEN animal is not scared of heights

14

cis32-spring2006-sklar-lec14




Relation to search

e Using rules can be thought of as just another form of search.
e Facts are states.

e Working memory is the agenda.

e Rules are the operations on states.

e This suggests that there are schemes for applying rules which are similar to breadth-first
search etc.

e We will look at these next.

cis32-spring2006-sklar-lec14 15




e Another example:

R1: IF animal has hair
THEN animal is a mammal

R2: IF animal gives milk
THEN animal is mammal

R3: IF animal has feathers
THEN animal is a bird

R4: IF animal can fly
AND animal lays eggs
THEN animal is bird

cis32-spring2006-sklar-lec14 16




R5:

R6:

R7:

R8:

IF animal eats meat
THEN animal i1s carnivore

IF animal has pointed teeth
AND animal has claws
THEN animal is carnivore

IF animal is mammal
AND animal has hoofs
THEN animal is ungulate

IF animal is mammal
AND animal chews cud
THEN animal is ungulate

cis32-spring2006-sklar-lec14

17



R9: IF animal is mammal
AND animal is carnivore
AND animal has tawny colour
AND animal has dark spots
THEN animal is cheetah

R10: IF animal is mammal
AND animal is carnivore
AND animal has tawny colour
AND animal has black stripes
THEN animal is tiger

cis32-spring2006-sklar-lec14 18




R11: IF animal is ungulate
AND animal has long legs
AND animal has dark spots
THEN animal is giraffe

R12: IF animal is ungulate
AND animal has black stripes
THEN animal is zebra

R14: IF animal is bird
AND animal does not fly
AND animal has long legs
AND animal has long neck
THEN animal is ostrich

cis32-spring2006-sklar-lec14 19




R14: IF animal is bird
AND animal does not fly
AND animal can swim
AND animal is black and white
THEN animal is penguin

R15: IF animal is bird
AND animal is good flyer
THEN animal is albatross

cis32-spring2006-sklar-lec14 20




Forward Chaining

e Given a set of rules like these, there are essentially two ways we can use them to generate
new knowledge:

— forward chaining — data driven;

— backward chaining — goal driven.

e In what follows. . .
let (c,a) be a rule.

let fires(c,WM) be true if condition c fires against working memory WM.

e Forward chaining algorithm is as follows.

cis32-spring2006-sklar-lec14 21




var WM : set of facts
var goal : goal we are searching for
var RuleBase : set of rules
var firedFlag : BOOLEAN
repeat

firedFlag = FALSE

for each (c,a) in RuleBase do

if fires(c,WM) then

1if a == goal then return success
end-if
add a to WM
set firedFlag to TRUE
end-if
end-for

until firedFlag = FALSE
return failure

cis32-spring2006-sklar-lec14 22




e Example. Suppose

WM = { animal has hair,
animal eats meat,
animal has tawny colour,
animal has dark spots}

and goal is

animal 1s cheetah

cis32-spring2006-sklar-lec14 23




e Note that all rules which can fire do fire.

e Can be inefficient — lead to spurious rules firing, unfocussed problem solving (cf.
breadth-first search).

e Set of rules that can fire known as conflict set.
e Decision about which rule to fire — conflict resolution.
e Number of strategies possible (cf. heuristic search):

— most specific rule first (with most antecedents).

— most recent first;

— user specified priorities.

cis32-spring2006-sklar-lec14 24




Meta Knowledge

e Another solution: meta-knowledge, (i.e., knowledge about knowledge) to guide search.

IF
conflict set contains any rule (c,a) such that
a = ‘‘animal is mammal’’

THEN
fire (c,a)

e So meta-knowledge encodes knowledge about how to guide search for solution.

e Explicitly coded in the form of rules, as with “object level” knowledge.

cis32-spring2006-sklar-lec14 25




Backward Chaining

e Backward chaining means reasoning from goals back to facts.
e The idea is that this focusses the search.

e Thinking of the rules as building a tree connecting facts, ...
e ...in backward chaining, every path ends with the goal.

e Since, in general, there are more initial facts that goals, ...

e ... more of the paths built will be solutions than in forward chaining (we hope :-).

cis32-spring2006-sklar-lec14 26




var WM : set of facts
var RuleBase : set of rules
var firedFlag : BOOLEAN
function prove(g : goal)
if g in WM then
return TRUE
if there is some (c,a) in WM
such that a == g then
for each precondition p in c do
if not prove(p,WM) then return FALSE
return TRUE
else
return FALSE
end-function

cis32-spring2006-sklar-lec14 27




e Example. Suppose

WM = { animal has hair,
animal eats meat,
animal has tawny colour,
animal has dark spots}

e and goal is

animal 1s cheetah

cis32-spring2006-sklar-lec14 28




Semantic Networks

e [axonomic reasoning can be more efficient not in logic.
e Developed by Quillian in 1968, for semantic memory.
e Models the “associations’ between ideas that people maintain.

e Semantic net is a labelled graph.

— nodes in graph represent objects, concepts, or situations;

— arcs in graph represent relationships between objects.

cis32-spring2006-sklar-lec14 29




Key types of arc:

subset
e —

“x is a kind of /" (C)

. bset + .
Example: penguin ™= bird
member
oL —
‘risavy"

Example: opus "% penguin
R
oL — 'y
“r is R-related to "

Example: bill friend opuS

e Inference is then by traversing arcs.

cis32-spring2006-sklar-lec14

30



cis32-spring2006-sklar-lec14 31




e Binary relations are easy and natural to represent.
e Others kinds of relation are harder.
e Unary relations (properties).
Example: “Opus is small”.
e Three place relations.
Example: “Opus brings tequila to the party.”
e Some binary relations are problematic ...

“Opus is larger than Bill."

cis32-spring2006-sklar-lec14 32




e (Quantified statements are very hard for semantic nets.

Examples:

— “every dog has bitten a postman”

— “every dog has bitten every postman”

e Partitioned semantic nets can represent these.

e Of course, expressions like this are very easy to represent in first order logic.

cis32-spring2006-sklar-lec14 33




e Example semantic net:

ener gy_source

Val | _outl et

Robot s

Arc conventions:

Subset =—>
Element —

Function —>
© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec14 34




Frames

e Frames are a kind of structured knowledge representation mechanism.

e All information relevant to a particular concept is stored in frame which resembles C
struct, PASCAL record, Java object. ..

e Each frame has a number of slots.

e Each slot may be filled by:

— a value;
— a pointer to another frame;

— a procedure.

e Slots may have default values associated with them.

e Frames = QO!

cis32-spring2006-sklar-lec14 35




e Frames are typically used to represent the properties of objects, and the relationships
between them,

e Frames may represent:

— generic concepts (cf classes) or

— specific items (cf objects).
e Most important kind of link between frames:
Is-a

e Facilitates reasoning about object properties.

o Allows default values to be inherited.

cis32-spring2006-sklar-lec14 36




e Example frame system:

Frame name

/

Printers

subset _of: O fice_nachines

superset _of: {Laser printers,
I nk_jet _printers}

energy _source: VWall outl et

Slots
creator: John _Jones
date: 16 _Aug 91
Slot names Slot fillers

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec14

37



e How to reason with frame systems?

e Easy to answer questions such as
isxay’?
Simply follow the is-a links.

e Example: Is snoopy a laser printer.

e (Problem of multiple inheritance — Nixon diamond.)

e Also useful for default reasoning.

Simply inherit all default values that are not explicitly provided.

e Example: Does snoopy the printer have a wall outlet?

cis32-spring2006-sklar-lec14 38




e Scripts are a variant of frames, for representing stereotypical sequences of events.

e A script is thus a frame with a set of prescribed slots, for example:

— Some initial conditions;
— Some final conditions;
— Some state description;
— Some actions; and

— Some actors

e The structure of the script is heavily domain dependent.

cis32-spring2006-sklar-lec14 39




e Example:

SCRIPT
Name: RESTAURANT
Roles: Customer, Waiter, Cook, Cashier
Entry condition: Customer is hungry
Props: Food, table, money, menu, tip
Events:

1/ Customer enters restaurant

2/ Customer goes to table

3/ Waiter brings menu

4/ Customer orders food

5/ Waiter brings food

6/ Customer eats food

cis32-spring2006-sklar-lec14 40




10/ Customer leaves restaurant

Main concept: 6

Results: Customer not hungry,
Customer has less money,

Restaurant has more money,
Waiter gets tip

41

cis32-spring2006-sklar-lec14




e Scripts developed by Roger Schank for understanding stories.
e Used to help understand language.

e Scripts provide context information without which sentences cannot be understood:

— sentences are not unconstrained sequences of words;

— stories are not unconstrained sequences of sentences.

e Schank developed SAM (Script Applier Mechanism) that could fill in gaps in stories.

e Also able to “explain” elements of stories, e.g., people get upset or angry when story
deviates from script.

cis32-spring2006-sklar-lec14 42




Problems with Frames & Semantic Nets

e Both frames and semantic nets are essentially arbitrary.

e Both are useful for representing certain sorts of knowledge.

e But both are essentially ad hoc — lack precise meaning, or semantics.
e Inference procedures poorly defined & justified.

e The syntax of KR scheme is irrelevant.

e Logic generalises these schemes. .. and that is both an advantage and a disadvantage.

cis32-spring2006-sklar-lec14 43




Summary

e This lecture has introduced the idea of knowledge representation, and some of the
requirements of a knowledge representation scheme.

e \We also looked at several knowledge representation schemes:

— production rules
— semantic nets
— frames

— scripts

cis32-spring2006-sklar-lec14 44




