
cis32-ai — lecture # 19 — wed-5-apr-2006

today’s topics:

• finishing propositional logic: proof theory

• predicate logic

• what were those Greek letters from last time?!?!?

φ phi

Φ capital Phi

ψ psi

π pi

τ tau

χ chi

cis32-spring2006-sklar-lec19 1

Proof Theory

• What is logic used for? A number of things, but most importantly, it is a language for

representing the properties of things.

• But also, we hope it will give us a method for establishing the properties of things.

• To see how logic may be used to establish the properties of things, it helps to look at its

history.

• Logic was originally developed to make the notion of an argument precise.

(We do not mean argument as in fighting here!)

cis32-spring2006-sklar-lec19 2

• Here is a classic argument:

All men are mortal

Socrates is a man

Socrates is mortal

cis32-spring2006-sklar-lec19 3

• This example serves to illustrate a number of features of arguments:

– The argument has a number of premises — these are the statements that appear

before the horizontal line;

– The argument has a conclusion — this is the statement that appears after the

horizontal line;

– The argument has the form

If

you accept that

the premises are true

then

you must accept that

the conclusion is true.

cis32-spring2006-sklar-lec19 4

• In mathematics, we are concerned with when arguments are sound.

• To formalise the notion of a sound argument, we need some extra terminology. . .

• Definition: If φ ∈ WFF, then:

1. if there is some interpretation π such that

π |= φ

then φ is said to be satisfiable, otherwise φ is unsatisfiable.

2. if

π |= φ

for all interpretations π, then φ is said to be valid.

• Valid formulae of propositional logic are called tautologies.

cis32-spring2006-sklar-lec19 5

• Theorem:

1. If φ is a valid formula, then ¬φ is unsatisfiable;

2. If ¬φ is unsatisfiable, then φ is valid.

• We indicate that a formula φ is valid by writing

|= φ.

• We can now define the logical consequence.

cis32-spring2006-sklar-lec19 6

• Definition: If

{φ1, . . . , φn, φ} ⊆ WFF

then φ is said to be a logical consequence of {φ1, . . . , φn} iff φ is satisfied by all

interpretations that satisfy

φ1 ∧ · · · ∧ φn.
• We indicate that φ is a logical consequence of φ1, . . . , φn by writing

{φ1, . . . , φn} |= φ.

• An expression like this is called a semantic sequent.

cis32-spring2006-sklar-lec19 7

• Theorem:

{φ1, . . . , φn} |= φ.

iff

|= (φ1 ∧ · · · ∧ φn) ⇒ φ.

• So we have a method for determining whether φ is a logical consequence of φ1, . . . φn: we

use a truth table to see whether φ1 ∧ · · · ∧ φn ⇒ φ is a tautology. If it is, then φ is a

logical consequence of φ1, . . . , φn.

• Our main concern in proof theory is thus to have a technique for determining whether a

given formula is valid, as this will then give us a technique for determining whether some

formula is a logical consequence of some others.

cis32-spring2006-sklar-lec19 8

• EXAMPLE. Show that

p ∧ q |= p ∨ q.
To do this, we construct a truth-table for

(p ∧ q) ⇒ (p ∨ q).
Here it is:

(1) (2)

p q p ∧ q p ∨ q (1) ⇒ (2)

F F F F T

F T F T T

T F F T T

T T T T T

Since

(p ∧ q) ⇒ (p ∨ q).
is true under every interpretation, we have that p ∨ q is a logical consequence of p ∧ q.

cis32-spring2006-sklar-lec19 9

• The notion of logical consequence we have defined above is acceptable for a definition of a

sound argument, but is not very helpful for checking whether a particular argument is

sound or not.

• The problem is that we must look at all the possible interpretations of the primitive

propositions. While this is acceptable for, say, 4 primitive propositions, it will clearly be

unacceptable for 100 propositions, as it would mean checking 2100 interpretations.

(Moreover, for first-order logic, there will be an infinite number of such interpretations.)

• What we require instead is an alternative version of logical consequence, that does not

involve this kind of checking. This leads us to the idea of syntactic proof.

cis32-spring2006-sklar-lec19 10

‘Syntactic’ Proof

• The idea of syntactic proof is to replace the semantic checking to determine whether a

formula is valid by a procedure that involves purely syntactic manipulation.

• The kinds of techniques that we shall use are similar to those that we use when solving

problems in algebra.

• The basic idea is that to show that φ is a logical consequence of φ1, . . . , φn, we use a set

of rules to manipulate formulae.

If we can derive φ from φ1, . . . , φn by using these rules, then φ is said to be proved from

φ1, . . . , φn, which we indicate by writing

φ1, . . . , φn ⊢ φ.

cis32-spring2006-sklar-lec19 11

• The symbol ⊢ is called the syntactic turnstile.

• An expression of the form

φ1, . . . , φn ⊢ φ.
is called a syntactic sequent.

• A rule has the general form:

⊢ φ1; · · · ;⊢ φn rule name

⊢ φ
Such a rule is read:

If

φ1, . . . , φn are proved

then

φ is proved.

cis32-spring2006-sklar-lec19 12

• EXAMPLE. Here is an example of such a rule:

⊢ φ;⊢ ψ ∧-I

⊢ φ ∧ ψ
This rule is called and introduction. It says that if we have proved φ, and we have also

proved ψ, then we can prove φ ∧ ψ.

• EXAMPLE. Here is another rule:

⊢ φ ∧ ψ ∧-E

⊢ φ;⊢ ψ

This rule is called and elimination. It says that if we have proved φ∧ψ, then we can prove

both φ and ψ; it allows us to eliminate the ∧ symbol from between them.

cis32-spring2006-sklar-lec19 13

• Let us now try to define precisely what we mean by proof.

• Definition: (Proof) If

{φ1, . . . , φm, φ} ⊆ WFF

then there is a proof of φ from φ1, . . . , φm iff there exists some sequence of formulae

ψ1, . . . , ψn

such that ψn = φ, and each formula ψk, for 1 ≤ k < n is either one of the formula

φ1, . . . , φm, or else is the conclusion of a rule whose antecedents appeared earlier in the

sequence.

cis32-spring2006-sklar-lec19 14

• If there is a proof of φ from φ1, . . . , φm, then we indicate this by writing:

φ1, . . . , φm ⊢ φ.

• It should be clear that the symbols ⊢ and |= are related. We now have to state exactly

how they are related.

• There are two properties of ⊢ to consider:

– soundness ;

– completness.

– Intuitively, ⊢ is said to be sound if it is correct, in that it does not let us derive

something that is not true.

– Intuitively, completeness means that ⊢ will let us prove anything that is true.

cis32-spring2006-sklar-lec19 15

• Definition: (Soundness) A proof system ⊢ is said to be sound with respect to semantics

|= iff

φ1, . . . , φn ⊢ φ
implies

φ1, . . . , φn |= φ.

• Definition: (Completeness) A proof system ⊢ is said to be complete with respect to

semantics |= iff

φ1, . . . , φn |= φ

implies

φ1, . . . , φn ⊢ φ.

cis32-spring2006-sklar-lec19 16

A Proof System

• There are many proof systems for propositional logic; we shall look at a simple one.

• First, we have an unusual rule that allows us to introduce any tautology.

TAUT

⊢ φ if φ is a tautology

• Because a tautology is true there is no problem bringing it into the proof.

cis32-spring2006-sklar-lec19 17

• Next, rules for eliminating connectives.

⊢ φ ∧ ψ ∧-E

⊢ φ;⊢ ψ

⊢ φ1 ∨ · · · ∨ φn;
φ1 ⊢ φ;

· · · ;
φn ⊢ φ

∨-E

⊢ φ

cis32-spring2006-sklar-lec19 18

• An alternative ∨ elimination rule is:

⊢ φ ∨ ψ;

⊢ φ⇒ χ;

⊢ ψ ⇒ χ

∨-E

⊢ χ

• Next, a rule called modus ponens, which lets us eliminate ⇒.

⊢ φ⇒ ψ;⊢ φ ⇒-E

⊢ ψ

cis32-spring2006-sklar-lec19 19

• Next, rules for introducing connectives.

⊢ φ1; · · · ;⊢ φn ∧-I

⊢ φ1 ∧ · · · ∧ φn

⊢ φ1; · · · ;φn ∨-I

⊢ φ1 ∨ · · · ∨ φn
• We have a rule called the deduction theorem. This rule says that if we can prove ψ from

φ, then we can prove that φ⇒ ψ.

φ ⊢ ψ ⇒-I

⊢ φ⇒ ψ

• There are a whole range of other rules, which we shall not list here.

cis32-spring2006-sklar-lec19 20

Proof Examples

• In this section, we give some examples of proofs in the propositional calculus.

• Example 1:

p ∧ q ⊢ q ∧ p

1. p ∧ q Given

2. p From 1 using ∧-E

3. q 1,∧-E

4. q ∧ p 2, 3, ∧-I

cis32-spring2006-sklar-lec19 21

• Example 2:

p ∧ q ⊢ p ∨ q

1. p ∧ q Given

2. p 1, ∧-E

3. p ∨ q 2, ∨-I

cis32-spring2006-sklar-lec19 22

• Example 3:

p ∧ q, p⇒ r ⊢ r

1. p ∧ q Given

2. p 1, ∧-E

3. p⇒ r Given

4. r 2, 3, ⇒-E

cis32-spring2006-sklar-lec19 23

• Example 4:

p⇒ q, q ⇒ r ⊢ p⇒ r

1. p⇒ q Given

2. q ⇒ r Given

3. p Assumption |
4. q 1, 3, ⇒-E |
5. r 2, 4, ⇒-E |
6. p⇒ r 3, 5, ⇒-I

cis32-spring2006-sklar-lec19 24

• Example 5:

(p ∧ q) ⇒ r ⊢ p⇒ (q ⇒ r)

1. (p ∧ q) ⇒ r Given

2. p Assumption |
3. q Assumption ||
4. p ∧ q 2, 3, ∧-I ||
5. r 1, 4, ⇒-I ||
6. q ⇒ r 3–5, ⇒-I |
7. p⇒ (q ⇒ r) 2–6, ⇒-I

cis32-spring2006-sklar-lec19 25

• Example 6:

p⇒ (q ⇒ r) ⊢ (p ∧ q) ⇒ r

1. p⇒ (q ⇒ r) Given

2. p ∧ q Assumption |
3. p 2, ∧-E |
4. q 2, ∧-E |
5. q ⇒ r 1, 3, ⇒-E |
6. r 4, 5, ⇒-E |
7. (p ∧ q) ⇒ r 2–6, ⇒-I

cis32-spring2006-sklar-lec19 26

• Example 7:

p⇒ q,¬q ⊢ ¬p

1. p⇒ q Given

2. ¬q Given

3. p Assumption |
4. q 1, 3, ⇒-E |
5. q ∧ ¬q 2, 4, ∧-I |
6. ¬p 3, 5, ¬-I

cis32-spring2006-sklar-lec19 27

• Example 8:

p⇒ q ⊢ ¬(p ∧ ¬q)

1. p⇒ q Given

2. p ∧ ¬q Assumption |
3. p 2, ∧-E |
4. ¬q 2, ∧-E |
5. q 1, 3, ⇒-E |
6. q ∧ ¬q 4, 5, ∧-I |
7. ¬(p ∧ ¬q) 6, ¬-I

cis32-spring2006-sklar-lec19 28

• Example 9:

Jim will party all night and pass AI? That must be wrong. If he works hard he won’t

have time to party. If he doesn’t work hard he’s not going to pass AI.

Let:

p Jim will party all night

q Jim will pass AI

r Jim works hard

Formalisation of argument:

r ⇒ ¬p,¬r ⇒ ¬q ⊢ ¬(p ∧ q)

cis32-spring2006-sklar-lec19 29

1. r ⇒ ¬p Given

2. ¬r ⇒ ¬q Given

3. p ∧ q Assumption |
4. r Assumption ||
5. ¬p 1, 4, ⇒-E ||
6. p 3, ∧-I ||
7. p ∧ ¬p 5, 6, ∧-I ||
8. ¬r 4, 7, ¬-I |
9. ¬q 2, 9, ⇒-E |

10. q 3, ∧-E |
11. q ∧ ¬q 9, 10, ∧-I |
12. ¬(p ∧ q) 3, 11, ¬-I

cis32-spring2006-sklar-lec19 30

Predicate Logic

• And now, we introduce first-order predicate logic.

• More expressive than propositional logic.

• Consider the following argument:

– all monitors are ready ;

– X12 is a monitor;

– therefore X12 is ready.

• Sense of this argument cannot be captured in propositional logic.

• Propositional logic is too coarse grained to allow us to represent and reason about this

kind of statement.

cis32-spring2006-sklar-lec19 31

Syntax

• We shall now introduce a generalisation of propositional logic called first-order logic

(FOL). This new logic affords us much greater expressive power.

• Definition: The alphabet of FOPL contains:

1. a set of constants ;

2. a set of variables;

3. a set of function symbols;

4. a set of predicates symbols ;

5. the connectives ∨, ¬;

6. the quantifiers ∀, ∃, ∃1;

7. the punctuation symbols), (.

cis32-spring2006-sklar-lec19 32

Terms

• The basic components of FOL are called terms.

• Essentially, a term is an object that denotes some object other than ⊤ or ⊥.

• The simplest kind of term is a constant.

• A value such as 8 is a constant.

• The denotation of this term is the number 8.

• Note that a constant and the number it denotes are different!

• Aliens don’t write “8” for the number 8, and nor did the Romans.

cis32-spring2006-sklar-lec19 33

• The second simplest kind of term is a variable.

• A variable can stand for anything in the domain of discourse.

• The domain of discourse (usually abbreviated to domain) is the set of all objects under

consideration.

• Sometimes, we assume the set contains “everything”.

• Sometimes, we explicitly give the set, and state what variables/constants can stand for.

cis32-spring2006-sklar-lec19 34

Functions

• We can now introduce a more complex class of terms — functions.

• The idea of functional terms in logic is similar to the idea of a function in programming:

recall that in programming, a function is a procedure that takes some arguments, and

returns a value.

In C:

T myfunction(T1 a1, ..., Tn an) {

...

}

this function takes n arguments; the first is of type T1, the second is of type T2, and so

on. The function returns a value of type T.

• In FOL, we have a set of function symbols; each symbol corresponds to a particular

function. (It denotes some function.)

cis32-spring2006-sklar-lec19 35

• Each function symbol is associated with a number called its arity. This is just the number

of arguments it takes.

• A functional term is built up by applying a function symbol to the appropriate number of

terms.

• Formally . . .

Definition: Let f be an arbitrary function symbol of arity n. Also, let τ1, . . . , τn be

terms. Then

f(τ1, . . . , τn)

is a functional term.

cis32-spring2006-sklar-lec19 36

• All this sounds complicated, but isn’t. Consider a function plus, which takes just two

arguments, each of which is a number, and returns the first number added to the second.

Then:

– plus(2, 3) is an acceptable functional term;

– plus(0, 1) is acceptable;

– plus(plus(1, 2), 4) is acceptable;

– plus(plus(plus(0, 1), 2), 4) is acceptable;

cis32-spring2006-sklar-lec19 37

• In maths, we have many functions; the obvious ones are

+ − / ∗ √
sin cos . . .

• The fact that we write

2 + 3

instead of something like

plus(2, 3)

is just convention, and is not relevant from the point of view of logic; all these are

functions in exactly the way we have defined.

cis32-spring2006-sklar-lec19 38

• Using functions, constants, and variables, we can build up expressions, e.g.:

(x + 3) ∗ sin 90

(which might just as well be written

times(plus(x, 3), sin(90))

for all it matters.)

cis32-spring2006-sklar-lec19 39

Predicates

• In addition to having terms, FOL has relational operators, which capture relationships

between objects.

• The language of FOL contains predicate symbols.

• These symbols stand for relationships between objects.

• Each predicate symbol has an associated arity (number of arguments).

• Definition: Let P be a predicate symbol of arity n, and τ1, . . . , τn are terms.

Then

P (τ1, . . . , τn)

is a predicate, which will either be ⊤ or ⊥ under some interpretation.

cis32-spring2006-sklar-lec19 40

• EXAMPLE. Let gt be a predicate symbol with the intended interpretation ‘greater than’.

It takes two arguments, each of which is a natural number.

Then:

– gt(4, 3) is a predicate, which evaluates to ⊤;

– gt(3, 4) is a predicate, which evaluates to ⊥.

• The following are standard mathematical predicate symbols:

> < = ≥ ≤ 6= . . .

• The fact that we are normally write x > y instead of gt(x, y) is just convention.

cis32-spring2006-sklar-lec19 41

• We can build up more complex predicates using the connectives of propositional logic:

(2 > 3) ∧ (6 = 7) ∨ (
√

4 = 2)

• So a predicate just expresses a relationship between some values.

• What happens if a predicate contains variables: can we tell if it is true or false?

Not usually; we need to know an interpretation for the variables.

• A predicate that contains no variables is a proposition.

cis32-spring2006-sklar-lec19 42

• Predicates of arity 1 are called properties.

• EXAMPLE. The following are properties:

Man(x)

Mortal(x)

Malfunctioning(x).

• We interpret P (x) as saying x is in the set P .

• Predicate that have arity 0 (i.e., take no arguments) are called primitive propositions.

These are identical to the primitive propositions we saw in propositional logic.

cis32-spring2006-sklar-lec19 43

Quantifiers

• We now come to the central part of first order logic: quantification.

• Consider trying to represent the following statements:

– all men have a mother ;

– every positive integer has a prime factor.

• We can’t represent these using the apparatus we’ve got so far; we need quantifiers.

cis32-spring2006-sklar-lec19 44

• We use three quantifers:

∀ — the universal quantifier ;

is read ‘for all. . . ’

∃ — the existential quantifier ;

is read ‘there exists. . . ’

∃1 — the unique quantifier ;

is read ‘there exists a unique. . . ’

cis32-spring2006-sklar-lec19 45

• The simplest form of quantified formula is as follows:

quantifier variable · predicate
where

– quantifier is one of ∀, ∃, ∃1;

– variable is a variable;

– and predicate is a predicate.

cis32-spring2006-sklar-lec19 46

Examples

• ∀x ·Man(x) ⇒Mortal(x)

‘For all x, if x is a man, then x is mortal.’

(i.e. all men are mortal)

• ∀x ·Man(x) ⇒ ∃1y ·Woman(y) ∧MotherOf(x, y)

‘For all x, if x is a man, then there exists exactly one y such that y is a woman and the

mother of x is y.’

(i.e., every man has exactly one mother).

cis32-spring2006-sklar-lec19 47

• ∃m ·Monitor(m) ∧MonitorState(m, ready)

‘There exists a monitor that is in a ready state.’

• ∀r · Reactor(r) ⇒ ∃1t · (100 ≤ t ≤ 1000) ∧ temp(r) = t

‘Every reactor will have a temperature in the range 100 to 1000.’

cis32-spring2006-sklar-lec19 48

• ∃n · posInt(n) ∧ n = (n ∗ n)

“Some positive integer is equal to its own square.”

• ∃c · EUcountry(c) ∧ Borders(c, Albania)
“Some EU country borders Albania.”

• ∀m,n · Person(m) ∧ Person(n) ⇒ ¬Superior(m,n)

“No person is superior to another.”

• ∀m · Person(m) ⇒ ¬∃n · Person(n) ∧ Superior(m,n)

(same as previous)

cis32-spring2006-sklar-lec19 49

Domains & Interpretations

• Suppose we have a formula ∀x · P (x).

What does x range over?

Physical objects, numbers, people, times, . . . ?

• Depends on the domain that we intend.

• Often, we name a domain to make our intended interpretation clear.

cis32-spring2006-sklar-lec19 50

• Suppose our intended interpretation is the positive integers. Suppose >,+, ∗, . . . have the

usual mathematical interpretation.

• Is this formula satisfiable under this interpretation?

∃n · n = (n ∗ n)

• Now suppose that our domain is all living people, and that ∗ means “is the child of”.

• Is the formula satisfiable under this interpretation?

cis32-spring2006-sklar-lec19 51

Comments

• Note that universal quantification is similar to conjunction.

Suppose the domain is the numbers {2, 4, 6}. Then

∀n · Even(n)

is the same as

Even(2) ∧ Even(4) ∧ Even(6).

• Existential quantification is similar to disjunction. Thus with the same domain,

∃n · Even(n)

is the same as

Even(2) ∨ Even(4) ∨ Even(6).

cis32-spring2006-sklar-lec19 52

• The universal and existential quantifiers are in fact duals of each other:

∀x · P (x) ⇔ ¬∃x · ¬P (x)

Saying that everything has some property is the same as saying that there is nothing that

does not have the property.

∃x · P (x) ⇔ ¬∀x · ¬P (x)

Saying that there is something that has the property is the same as saying that its not the

case that everything doesn’t have the property.

cis32-spring2006-sklar-lec19 53

Decidability

• In propositional logic, we saw that some formulae were tautologies — they had the

property of being true under all interpretations.

• We also saw that there was a procedure which could be used to tell whether any formula

was a tautology — this procedure was the truth-table method.

• A formula of FOL that is true under all interpretations is said to be valid.

• So in theory we could check for validity by writing down all the possible interpretations and

looking to see whether the formula is true or not.

cis32-spring2006-sklar-lec19 54

• Unfortuately in general we can’t use this method.

• Consider the formula:

∀n · Even(n) ⇒ ¬Odd(n)

• There are an infinite number of interpretations.

• Is there any other procedure that we can use, that will be guaranteed to tell us, in a finite

amount of time, whether a FOL formula is, or is not, valid?

• The answer is no.

• FOL is for this reason said to be undecidable.

cis32-spring2006-sklar-lec19 55

Proof in FOL

• Proof in FOL is similar to propositional logic (PL); we just need an extra set of rules, to

deal with the quantifiers.

• FOL inherits all the rules of PL.

• To understand FOL proof rules, need to understand substitution.

• The most obvious rule, for ∀-E.

Tells us that if everything in the domain has some property, then we can infer that any

particular individual has the property.

⊢ ∀x · φ(x); ∀-E

⊢ φ(a)
for any a in the domain

Going from general to specific.

cis32-spring2006-sklar-lec19 56

• Example 1.

Let’s use ∀-E to get the Socrates example out of the way.

Man(s); ∀x ·Man(x) ⇒Mortal(x)

⊢Mortal(s)

1. Man(s) Given

2. ∀x ·Man(x) ⇒Mortal(x) Given

3. Man(s) ⇒Mortal(s) 2, ∀-E

4. Mortal(s) 1, 3, ⇒-E

cis32-spring2006-sklar-lec19 57

• Existential Introduction Rule 1 (∃-I(1)).

• We can also go from the general to the slightly less specific!

⊢ ∀x · φ(x); ∃-I(1)

⊢ ∃x · φ(x)
if domain not empty

Note the side condition.

The ∃ quantifier asserts the existence of at least one object.

The ∀ quantifier does not.

cis32-spring2006-sklar-lec19 58

• Existential Introduction Rule 2 (∃-I(2)).

• We can also go from the very specific to less specific.

⊢ φ(a); ∃-I(2)

⊢ ∃x · φ(x)

• In other words once we have a concrete example, we can infer there exists something with

the property of that example.

cis32-spring2006-sklar-lec19 59

• We often informally make use of arguments along the lines. . .

1. We know somebody is the murderer.

2. Call this person a.

3. . . .

(Here, a is called a Skolem constant.)

• We have a rule which allows this, but we have to be careful how we use it!

⊢ ∃x · φ(x); ∃-E

⊢ φ(a)
a doesn’t occur elsewhere

cis32-spring2006-sklar-lec19 60

• Here is an invalid use of this rule:

1. ∃x ·Boring(x) Given

2. Lecture(AI) Given

3. Boring(AI) 1, ∃-E

• (The conclusion may be true, the argument isn’t sound.)

cis32-spring2006-sklar-lec19 61

• Example 2:

1. Everybody is either happy or rich.

2. Simon is not rich.

3. Therefore, Simon is happy.

Predicates:

– H(x) means x is happy;

– R(x) means x is rich.

• Formalisation:

∀x.H(x) ∨ R(x);¬R(Simon) ⊢ H(Simon)

cis32-spring2006-sklar-lec19 62

1. ∀x.H(x) ∨ R(x) Given

2. ¬R(Simon) Given

3. H(Simon) ∨R(Simon) 1, ∀-E

4. ¬H(Simon) ⇒ R(Simon) 3, defn ⇒
5. ¬H(Simon) Assumption |
6. R(Simon) 4, 5, ⇒-E |
7. R(Simon) ∧ ¬R(Simon) 2, 6, ∧-I |
8. ¬¬H(Simon) 5, 7, ¬-I

9. H(Simon) ⇔ ¬¬H(Simon) PL axiom

10. (H(Simon) ⇒ ¬¬H(Simon))

∧(¬¬H(Simon) ⇒ H(Simon)) 9, defn ⇔
11. ¬¬H(Simon) ⇒ H(Simon) 10,∧-E

12. H(Simon) 8, 11, ⇒-E

cis32-spring2006-sklar-lec19 63

Summary

• This lecture looked at predicate (or first order) logic.

• Predicate logic is a generalisation of propositional logic.

• The generalisation requires the use of quantifiers, and these need special rules for handling

them when doing inference.

• We looked at how the proof rules for propositional logic need to be extended to handle

quantifiers.

cis32-spring2006-sklar-lec19 64

