today’s topics:
• logic-based agents (see notes from last time)
• planning

What is Planning?
• Key problem facing agent is deciding what to do.
• We want agents to be taskable: give them goals to achieve, have them decide for themselves how to achieve them.
• Basic idea is to give an agent:
 – representation of goal to achieve;
 – knowledge about what actions it can perform; and
 – knowledge about state of the world;
and to have it generate a plan to achieve the goal.
• Essentially, this is automatic programming.

Question: How do we represent...
 – goal to be achieved;
 – state of environment;
 – actions available to agent;
 – plan itself.
• We show how all this can be done in first-order logic...
We'll illustrate the techniques with reference to the blocks world.

- Contains a robot arm, 3 blocks (A, B and C) of equal size, and a table-top.
- Initial state:

```
  A
  B
  C
```

To represent this environment, need an ontology.

- \(On(x, y) \): obj \(y \) on top of obj \(x \)
- \(OnTable(x) \): obj \(x \) is on the table
- \(Clear(x) \): nothing is on top of obj \(x \)
- \(Holding(x) \): arm is holding \(x \)

Here is a first-order logic representation of the blocks world described above:

\[
\begin{align*}
&Clear(A) \\
&On(A, B) \\
&OnTable(B) \\
&OnTable(C) \\
&Clear(C)
\end{align*}
\]

- Use the closed world assumption: anything not stated is assumed to be false.

A goal is represented as a first-order logic formula.

- Here is a goal:

\[
OnTable(A) \land OnTable(B) \land OnTable(C)
\]

Which corresponds to the state:

```
  A
  B
  C
```

Actions are represented using a technique that was developed in the STRIPS planner.
• Each action has:
 – a name which may have arguments;
 – a pre-condition list list of facts which must be true for action to be executed;
 – a delete list list of facts that are no longer true after action is performed;
 – an add list list of facts made true by executing the action.
Each of these may contain variables.

• Example 1:
The stack action occurs when the robot arm places the object \(x \) it is holding is placed on top of object \(y \).

\[
\text{Stack}(x, y) \\
\text{pre } Clear(y) \land Holding(x) \\
\text{del } Clear(y) \land Holding(x) \\
\text{add } ArmEmpty \land On(x, y)
\]

• Example 2:
The unstack action occurs when the robot arm picks an object \(x \) up from on top of another object \(y \).

\[
\text{UnStack}(x, y) \\
\text{pre } On(x, y) \land Clear(x) \land ArmEmpty \\
\text{del } On(x, y) \land ArmEmpty \\
\text{add } Holding(x) \land Clear(y)
\]

Stack and UnStack are inverses of one-another.

• Example 3:
The pickup action occurs when the arm picks up an object \(x \) from the table.

\[
\text{Pickup}(x) \\
\text{pre } Clear(x) \land OnTable(x) \land ArmEmpty \\
\text{del } OnTable(x) \land ArmEmpty \\
\text{add } Holding(x)
\]

• Example 4:
The putdown action occurs when the arm places the object \(x \) onto the table.

\[
\text{PutDown}(x) \\
\text{pre } Holding(x) \\
\text{del } Holding(x) \\
\text{add } Holding(x) \land ArmEmpty
\]
What is a plan?
A sequence (list) of actions, with variables replaced by constants.

So, to get from:

```
A
B
C
```

We need the set of actions:

- `Unstack(A)`
- `Putdown(A)`
- `Pickup(B)`
- `Stack(B, C)`
- `Pickup(A)`
- `Stack(A, B)`

In "real life", plans contain conditionals (IF ... THEN ...) and loops (WHILE ... DO ...),
but most simple planners cannot handle such constructs — they construct linear plans.

Simplest approach to planning: means-ends analysis.
Involves backward chaining from goal to original state.
Start by finding an action that has goal as post-condition.
Assume this is the last action in plan.
Then figure out what the previous state would have been.
Try to find action that has this state as post-condition.
Recurse until we end up (hopefully!) in original state.

```
function plan(
  d: WorldDesc,  // initial env state
  g: Goal,      // goal to be achieved
  p: Plan,      // plan so far
  A: set of actions  // actions available)
  if d |= g then
    return p
  else
    choose a in A such that
    add(a) |= g and
del(a) |= g
    set g = pre(a)
    append a to p
    return plan(d, g, p, A)
```

Involves backward chaining from goal to original state.
Assume this is the last action in plan.
Then figure out what the previous state would have been.
Try to find action that has this state as post-condition.
Recurse until we end up (hopefully!) in original state.
• How does this work on the previous example?

• This algorithm not guaranteed to find the plan...
 • ... but it is sound: If it finds the plan is correct.
 • Some problems:
 – negative goals;
 – maintenance goals;
 – conditionals & loops;
 – exponential search space;
 – logical consequence tests;

The Frame Problem

• A general problem with representing properties of actions:
 How do we know exactly what changes as the result of performing an action?
 If I pick up a block, does my hair colour stay the same?
• One solution is to write frame axioms.
 Here is a frame axiom, which states that SP’s hair colour is the same in all the situations
 \(s' \) that result from performing \(\text{Pickup}(x) \) in situation \(s \) as it is in \(s \).

\[
\forall s, s'. \ Result(SP, \text{Pickup}(x), s) = s' \Rightarrow HCol(SP, s) = HCol(SP, s')
\]

• Stating frame axioms in this way is unfeasible for real problems.
 • (Think of all the things that we would have to state in order to cover all the possible
 frame axioms).
• STRIPS solves this problem by assuming that everything not explicitly stated to have
 changed remains unchanged.
• The price we pay for this is that we lose the advantages of using logic:
 – Semantics goes out of the window
• However, more recent work has effectively solved the frame problem (using clever
 second-order approaches).
• Consider we have the following initial state and goal state:

\[
\begin{array}{c|c|c}
\text{B} & \text{A} & \text{C} \\
\hline
\text{C} & \text{B} & \text{A}
\end{array}
\]

• What operations will be in the plan?

• Clearly we need to Stack B on C at some point, and we also need to Unstack A from C and Stack it on B.

• Which operation goes first?

• Obviously we need to do the Unstack first, and the Stack B on C, but the planner has no way of knowing this.

• It also has no way of “undoing” a partial plan if it leads into a dead end.

• So if it chooses to Stack(A,C) after the Unstack, it is sunk.

• This is a big problem with linear planners

• How could we modify our planning algorithm?

• Modify the middle of the algorithm to be:

1. if \(d \models g \) then
2. return \(p \)
3. else
4. choose \(a \) in \(A \) such that
5. \(\text{add}(a) \models g \) and
6. \(\text{del}(a) \not\models g \)
6a. \(\text{na_clobber}(<\text{add}(a), \text{del}(a), \text{rest}_\text{of}_\text{plan}> \)
7. set \(g = \text{pre}(a) \)
8. append \(a \) to \(p \)
9. return \(\text{plan}(d, g, p, A) \)

• But how can we do this?

• We will give an answer in the next lecture.

• This lecture has looked at planning.

• We looked mainly at a logical view of planning, using STRIPS operators.

• We also discussed the frame problem, and Sussman’s anomaly.

• Sussman’s anomaly motivated some thoughts about partial-order planning.

• We will cover partial order planning in more detail in the next lecture.