today’s topics:

- logic-based agents (see notes from last time)
- planning
What is Planning?

- Key problem facing agent is *deciding what to do*.
- We want agents to be *taskable*: give them *goals* to achieve, have them decide for themselves how to achieve them.
- Basic idea is to give an agent:
 - representation of goal to achieve;
 - knowledge about what actions it can perform; and
 - knowledge about state of the world;
and to have it generate a *plan* to achieve the goal.
- Essentially, this is *

 automatic programming.
Plan to achieve goal

Planner

goal
state of environment
possible actions
• Question: How do we represent…
 – goal to be achieved;
 – state of environment;
 – actions available to agent;
 – plan itself.

• We show how all this can be done in first-order logic…
• We’ll illustrate the techniques with reference to the *blocks world*.
• Contains a robot arm, 3 blocks (A, B and C) of equal size, and a table-top.
• Initial state:
To represent this environment, need an ontology.

- $On(x, y)$: obj x on top of obj y
- $OnTable(x)$: obj x is on the table
- $Clear(x)$: nothing is on top of obj x
- $Holding(x)$: arm is holding x
• Here is a first-order logic representation of the blocks world described above:

\begin{align*}
 &\text{Clear}(A) \\
 &\text{On}(A, B) \\
 &\text{OnTable}(B) \\
 &\text{OnTable}(C) \\
 &\text{Clear}(C)
\end{align*}

• Use the \textit{closed world assumption}: anything not stated is assumed to be \textit{false}.
• A goal is represented as a first-order logic formula.

• Here is a goal:

\[\text{OnTable}(A) \land \text{OnTable}(B) \land \text{OnTable}(C) \]

• Which corresponds to the state:

A B C

• Actions are represented using a technique that was developed in the STRIPS planner.
• Each action has:
 – a name
 which may have arguments;
 – a pre-condition list
 list of facts which must be true for action to be executed;
 – a delete list
 list of facts that are no longer true after action is performed;
 – an add list
 list of facts made true by executing the action.

Each of these may contain variables.
Example 1:
The *stack* action occurs when the robot arm places the object x it is holding is placed on top of object y.

\[
\begin{align*}
\text{Stack}(x, y) \\
\text{pre} & \quad \text{Clear}(y) \land \text{Holding}(x) \\
\text{del} & \quad \text{Clear}(y) \land \text{Holding}(x) \\
\text{add} & \quad \text{ArmEmpty} \land \text{On}(x, y)
\end{align*}
\]
• Example 2:

The *unstack* action occurs when the robot arm picks an object x up from on top of another object y.

$$UnStack(x, y)$$

pre $On(x, y) \land Clear(x) \land ArmEmpty$

del $On(x, y) \land ArmEmpty$

add $Holding(x) \land Clear(y)$

Stack and UnStack are *inverses* of one-another.
• Example 3:
 The *pickup* action occurs when the arm picks up an object x from the table.

 \[
 Pickup(x)
 \]
 \[
 \text{pre } Clear(x) \land OnTable(x) \land ArmEmpty
 \]
 \[
 \text{del } OnTable(x) \land ArmEmpty
 \]
 \[
 \text{add } Holding(x)
 \]

• Example 4:
 The *putdown* action occurs when the arm places the object x onto the table.

 \[
 PutDown(x)
 \]
 \[
 \text{pre } Holding(x)
 \]
 \[
 \text{del } Holding(x)
 \]
 \[
 \text{add } Holding(x) \land ArmEmpty
 \]
• What is a plan?
A sequence (list) of actions, with variables replaced by constants.
• So, to get from:
• We need the set of actions:

\[\text{Unstack}(A) \]
\[\text{Putdown}(A) \]
\[\text{Pickup}(B) \]
\[\text{Stack}(B, C) \]
\[\text{Pickup}(A) \]
\[\text{Stack}(A, B) \]
In “real life”, plans contain conditionals (IF .. THEN...) and loops (WHILE... DO...), but most simple planners cannot handle such constructs — they construct linear plans.

Simplest approach to planning: means-ends analysis.

Involves backward chaining from goal to original state.

Start by finding an action that has goal as post-condition. Assume this is the last action in plan.

Then figure out what the previous state would have been. Try to find action that has this state as post-condition.

Recurse until we end up (hopefully!) in original state.
function $plan$(
 d : WorldDesc, // initial env state
 g : Goal, // goal to be achieved
 p : Plan, // plan so far
 A : set of actions // actions available)
1. if $d \models g$ then
2. return p
3. else
4. choose a in A such that
5. \begin{align*}
 \text{add}(a) \models g & \text{ and } \\
 \text{del}(a) \not\models g
 \end{align*}
6. set $g = \text{pre}(a)$
7. append a to p
8. return $plan(d, g, p, A)$
• How does this work on the previous example?
• This algorithm not guaranteed to find the plan…
• … but it is sound: If it finds the plan is correct.
• Some problems:
 – negative goals;
 – maintenance goals;
 – conditionals & loops;
 – exponential search space;
 – logical consequence tests;
The Frame Problem

- A general problem with representing properties of actions:
 How do we know exactly what changes as the result of performing an action?
 If I pick up a block, does my hair colour stay the same?

- One solution is to write frame axioms.
 Here is a frame axiom, which states that SP’s hair colour is the same in all the situations s' that result from performing $Pickup(x)$ in situation s as it is in s.

$$\forall s, s'. Result(SP, Pickup(x), s) = s' \Rightarrow HCol(SP, s) = HCol(SP, s')$$
• Stating frame axioms in this way is unfeasible for real problems.
• (Think of all the things that we would have to state in order to cover all the possible frame axioms).
• STRIPS solves this problem by assuming that everything not explicitly stated to have changed remains unchanged.
• The price we pay for this is that we lose the advantages of using logic:
 – Semantics goes out of the window
• However, more recent work has effectively solved the frame problem (using clever second-order approaches).
Sussman’s Anomaly

- Consider we have the following initial state and goal state:

\[
\begin{array}{c}
\text{B} \\
\text{C}
\end{array}
\quad \rightarrow \quad
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C}
\end{array}
\]

- What operations will be in the plan?
• Clearly we need to *Stack* B on C at some point, and we also need to *Unstack* A from C and *Stack* it on B.

• Which operation goes first?

• Obviously we need to do the *Unstack* first, and the *Stack* B on C, but the planner has no way of knowing this.

• It also has no way of “undoing” a partial plan if it leads into a dead end.

• So if it chooses to *Stack*(A, C) after the *Unstack*, it is sunk.

• This is a big problem with linear planners

• How could we modify our planning algorithm?
• Modify the middle of the algorithm to be:

1. if \(d \models g \) then
2. return \(p \)
3. else
4. choose \(a \) in \(A \) such that
5. \(\text{add}(a) \models g \) and
6. \(\text{del}(a) \not\models g \)
6a. \(\text{no_clobber}(\text{add}(a), \text{del}(a), \text{rest_of_plan}) \)
7. set \(g = \text{pre}(a) \)
8. append \(a \) to \(p \)
9. return \(\text{plan}(d, g, p, A) \)

• But how can we do this?
• We will give an answer in the next lecture.
Summary

- This lecture has looked at planning.
- We looked mainly at a logical view of planning, using STRIPS operators.
- We also discussed the frame problem, and Sussman’s anomaly.
- Sussman’s anomaly motivated some thoughts about partial-order planning.
- We will cover partial order planning in more detail in the next lecture.